K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)

Tương tự ta có:\(\frac{b+1}{c^2+1}\ge b+1-\frac{bc+c}{2};\frac{c+1}{a^2+1}\ge c+1-\frac{ca+a}{2}\)

Cộng theo vế ta có: \(VT\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}=6-\frac{3+ab+bc+ca}{2}\)

Mà theo BĐT AM-GM: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Suy ra \(VT\ge6-3=3\)(ĐPCM)

14 tháng 7 2018

(8x-3)(3x+2)-(4x+7)(x+4) = (2x+1)(5x-1)-33

(24x2-9x+16x-6)-(4x2+7x+16x+28) = (10x2+5x-2x-1)-33

24x2+7x-6-4x2-23x-28 = 10x2+3x-1-33

20x2-16x-34 = 10x2+3x-34

<=> 20x2-16x = 10x2+3x

2x2-19x=0

2x(x-19)=0

=>\(\left[{}\begin{matrix}2x=0\Rightarrow x=0\\x-19=0\Rightarrow x=19\end{matrix}\right.\)

Không chắc lắm :)

16 tháng 9 2018

ở trên đúng r, nhưng sai từ chỗ 2x^2 -19x=0, đáng lẽ phải là 10x^2 -19x =0 mới đúng

16 tháng 4 2017

tk ủng hộ nha mọi người

16 tháng 4 2017

x = 4

Tk mình nha!!!>.<

25 tháng 3 2020
https://i.imgur.com/9wb6VDD.jpg
25 tháng 3 2020

a)\(\left(-x^2y^5\right)^2:\left(-x^2y^5\right)=\left(-x^2y^5\right)\)

b)\(5\cdot\left(x-2y\right)^3:\left(5x-10y\right)\)

\(=5\cdot\left(x-2y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)

\(=\left(5x-10y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)

\(=\left(x-2y\right)^2\)

Thay \(x=\frac{1}{2},y=1\) vào:

\(\left(\frac{1}{2}-2\cdot1\right)^2=\left(\frac{-3}{2}\right)^2=\frac{9}{4}\)

22 tháng 6 2017

 Câu a đơn giản

b)

 \(A=\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}=\frac{\left(x^4-x^3\right)-\left(x-1\right)}{\left(x^4+x^3+\frac{x^2}{4}\right)+\left(\frac{11}{4}x^2+2x+\frac{4}{11}\right)+1-\frac{4}{11}}\)

\(=\frac{\left(x-1\right)\left(x^3-1\right)}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)

\(=\frac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)

\(=\frac{\left(x-1\right)^2\left[\left(x^2+x+0,25\right)+0,75\right]}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)

\(=\frac{\left(x-1\right)^2\left[\left(x+0,5\right)^2+0,75\right]}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)

Vì \(\left(x-1\right)^2\left[\left(x+0,5\right)^2+0,75\right]>0\)và \(\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}>0\)

nên \(A>0\)hay A ko âm

Nhớ k nha !