Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Do a , b ,c đối xứng , giả sử a \(\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^2\ge b^2\ge c^2\\\dfrac{a}{b+c}\ge\dfrac{b}{a+c}\ge\dfrac{c}{a+b}\end{matrix}\right.\)
Áp dụng BĐT Trê - bư -sép ta có :
\(a^2.\dfrac{a}{b+c}+b^2.\dfrac{b}{a+c}+c^2.\dfrac{c}{a+b}\ge\dfrac{a^2+b^2+c^2}{3}.\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=\dfrac{1}{3}.\dfrac{3}{2}=\dfrac{1}{2}\)Vậy \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\) Dấu bằng xảy ra khi a = b =c = \(\dfrac{1}{\sqrt{3}}\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
\(a^5+a+a+a>=4\sqrt[4]{a^8}=4a^2\)
Làm tương tự rồi cộng vế ta được:
\(VT\ge4\left(a^2+b^2+c^2\right)-3\left(a+b+c\right)\ge4\left(a^2+b^2+c^2\right)-3\sqrt{3\left(a^2+b^2+c^2\right)}=4.3-3\sqrt{3.3}=3\)
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:
\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)
Chứng minh tương tự, cộng lại ta có đpcm.
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm
Lời giải:
Theo BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)
\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)
Do đó:
\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)
\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)
Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.