Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x=\(\dfrac{1}{2}\)a+\(\dfrac{1}{2}\)b+\(\dfrac{1}{2}\)c=\(\dfrac{1}{2}\).(a+b+c)\(\Rightarrow\)2x=(a+b+c)
M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x\(^2\)
= x\(^2\)-xb-ax+ab+x\(^2\)-xc-bx+bc+x\(^2\)-ax-cx+ac+x\(^2\)
= 4x\(^2\)-2ac-2bx-2cx+ab+bc+ac
= 4x\(^2\)-2x(a+b+c)+ab+bc+ca
Thay 2x=a+b+c,ta được:
M= 4x\(^2\)-2x.2c+ab+bc+ca
M= 4x\(^2\)-4x\(^2\)+ab+bc+ca
M= ab+bc+ca
4p(p-a)=2(a+b+c)[(b+c-a)/2]=(a+b+c)(c+b-a)(1)
b2+c2+2ab-a2=(a+b+c)(c+b-a)(2)
từ (1) và (2) suy ra b2+c2+2ab-a2=4p(p-a)
Lời giải:
ĐKĐB \(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Rightarrow \left\{\begin{matrix} a-b=\frac{b-c}{bc}\\ b-c=\frac{c-a}{ac}\\ c-a=\frac{a-b}{ab}\end{matrix}\right.\)
\(\Rightarrow (a-b)(b-c)(c-a)=\frac{(b-c)(c-a)(a-b)}{a^2b^2c^2}\)
Vì $a,b,c$ đôi 1 khác nhau nên $a^2b^2c^2=1$. Khi đó:
\(P=(5.1^3-8.1+2)^{2020}=(-1)^{2020}=1\)
CM như kiểu là bé hoặc lớn hơn 0 vs mọi x,y á bạn thầy cô mk ghi đề vậy thì mk viết vậy thôi ạ
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
Xét \(VP=4p.\left(p-a\right)=2p.2.\left(p-a\right)=2p.\left(2p-2a\right)=\left(a+b+c\right)\left(b+c-a\right)\)
\(ab+ac-a^2+b^2+bc-ab+bc+c^2-ac=2bc+b^2+c^2-a^2=VT\)
Vậy ta có đpcm
2bc+b^2+c^2-a^2=(b+c)^2-a^2=(b+c-a)(b+c+a)=(2p-a-a)2p=(2p-2a)2p=2.2p(p-a)=4p(p-a)