K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

Dùng bđt Bunhiacopxki

\(\left[a^2+\left(\sqrt{2}b\right)^2+\left(\sqrt{3}c\right)^2\right]\left[1+\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right]\ge\left(a+b+c\right)^2=2016^2\)

\(\Rightarrow S\ge\frac{2016^2}{\frac{11}{6}}=\frac{2016^2.6}{11}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}\frac{a}{1}=\frac{\sqrt{2}b}{\frac{1}{\sqrt{2}}}=\frac{\sqrt{3}c}{\frac{1}{\sqrt{3}}}\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2b=3c\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{12096}{11}\\b=\frac{6048}{11}\\c=\frac{4032}{11}\end{cases}}\)

12 tháng 11 2017

Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ

14 tháng 5 2021

Ta có: \(a+2b+3c=13\)

\(\Leftrightarrow\left(a-1\right)+2\left(b-1\right)+3\left(c-1\right)=7\)

Mà \(7^2=\left[\left(a-1\right)+2\left(b-1\right)+3\left(c-1\right)\right]^2\)

\(\le\left(1^2+2^2+3^2\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\right]\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge\frac{7}{2}\)

Dấu "=" xảy ra khi: \(a-1=\frac{b-1}{2}=\frac{c-1}{3}\Rightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{5}{2}\end{cases}}\)

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

2 tháng 10 2016

a)A=x(x+1)(x+2)(x+3)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

Đặt \(t=x^2+3x\) ta đc:

\(t\left(t+2\right)\)\(=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)

Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Với a,b,c dương ta áp dụng Bđt Cô si 3 số:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu = khi a=b=c

Vậy MinB=9 khi a=b=c

c)\(C=a^2+b^2+c^2\)

Áp dụng Bđt Bunhiacopski 3 cặp số ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

\(\Rightarrow C\ge\frac{3}{4}\)

Dấu = khi \(a=b=c=\frac{1}{2}\)

Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)

NV
14 tháng 5 2021

\(P=a^2-2a+b^2-2b+c^2-2c+3\)

\(P=\left(a^2+\dfrac{9}{4}\right)+\left(b^2+4\right)+\left(c^2+\dfrac{25}{4}\right)-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge3a+4b+5c-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge a+2b+3c-\dfrac{19}{2}=13-\dfrac{19}{2}=\dfrac{7}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};2;\dfrac{5}{2}\right)\)

14 tháng 5 2021

Anh ;-; em chưa kịp làm :|