K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

giúp với m.n

12 tháng 7 2016

Làm đơn giản thế này thôi nhé An Kì :

Ta có : \(2016a+bc=\left(a+b+c\right)a+bc=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)Tương tự : \(2016b+ac=\left(a+b\right)\left(b+c\right)\)

\(2016c+ab=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\left(2016a+bc\right)\left(2016b+ac\right)\left(2016c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

12 tháng 7 2016

Ta có : \(2016a+bc=\left(a+b+c\right).a+bc=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

\(2016b+ac=\left(a+b+c\right).b+ac=ab+b^2+bc+ac=b\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(b+c\right)\)

\(2016c+ab=\left(a+b+c\right)c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\left(2016a+bc\right)\left(2016b+ac\right)\left(2016c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\) (đpcm)

21 tháng 7 2016

Xét : \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Suy ra : \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c=2016\)

Vậy ta có điều phải chứng minh.

3 tháng 9 2016

\(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016c}{ac+2016c+2016}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

\(=\frac{a}{a.\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac.\left(1+bc+b\right)}\)

\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}\)

\(=\frac{1+b+bc}{b+bc+1}=1\)

19 tháng 2 2018

sửa lại tí nha

Cho a,b>0 thoa mãn ab>2015a+2016b. CMR: \(a+b>\left(\sqrt{2015}+\sqrt{2016}\right)^2\)

1 tháng 7 2017

a2+b2+c2=ab+bc+ca

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a=b=c

mà a+b+c=3<=>a=b=c=1

=>P=0

20 tháng 9 2018

P=2017 chứ bạn

16 tháng 7 2019

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Leftrightarrow a=b=c=1\)

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

4 tháng 9 2017

.Tuy nhiên mik có thể chữa lại đề cho ae dễ đọc nha:

Cho a,b,c>0 và:

\(P=\frac{a^3}{a^2}+ab+b^2+\frac{b^3}{b^2}+bc+c^2+\frac{c^3}{c^2}+ac+a^2.\)

\(Q=\frac{b^3}{a^2}+ab+b^2+\frac{c^3}{b^2}+bc+c^2+\frac{a^3}{c^2}+ac+a^2.\)

Chứng minh rằng:P=Q.