K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Nhân cả hai vế của đẳng thức cho a+b+c ta được

\(\dfrac{a+b+c}{a+b}\)+\(\dfrac{a+b+c}{a+b}\)=\(\dfrac{a+b+c}{c+a}\)=\(\dfrac{a+b+c}{90}\)

=> a+ \(\dfrac{c}{a+b}\)+1+\(\dfrac{a}{b+c}\)+1+\(\dfrac{b}{c+a}\)=\(\dfrac{2007}{90}\)

=>\(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+a}\)+\(\dfrac{c}{a+b}\)=\(\dfrac{2007}{90}\)-3= 22,3-3=19,3

4 tháng 3 2017

\(\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{90}\Leftrightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{a+b+c}{a+b}\)\(\Leftrightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1=\dfrac{2007}{90}\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{193}{10}\)

\(\Rightarrow S=\dfrac{193}{10}\)

5 tháng 5 2017

Mik ko hỉu, tại sao có "-3"?

2 tháng 4 2017

\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\Rightarrow S=2016.\dfrac{1}{90}-3\)

\(\Rightarrow S=\dfrac{97}{2}\)

5 tháng 5 2017

Cho mik hỏi chút: làm sao có "-3" vậy bn?

17 tháng 5 2017

Sửa đề:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2001.\dfrac{1}{10}-3\)

\(=200,1-3=197,1\)

Vậy S = 197,1

17 tháng 5 2017

kcj

10 tháng 2 2018

https://hoc24.vn/hoi-dap/question/559178.html

Tương tự

12 tháng 2 2018

không đx bạn ạ

9 tháng 7 2017

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{10}\)

\(\Rightarrow2017\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)=\dfrac{2017}{10}\)

\(\Rightarrow\dfrac{2017}{a+b}+\dfrac{2017}{b+c}+\dfrac{2017}{a+c}=201,7\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}=201,7\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{a+c}{a+c}+\dfrac{b}{a+c}=201,7\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}=201,7\)

\(\Rightarrow3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}=201,7\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}=198,7\)

9 tháng 7 2017

Ta có: \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{10}\)

\(=>2017\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2017}{10}\)

\(=>\dfrac{2017}{a+b}+\dfrac{2017}{b+c}+\dfrac{2017}{c+a}=201,7\)

Mà 2017 = a+b+c nên ta có:

\(=>\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=201,7\)

\(=>1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}=201,7\)

\(=>\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=201,7-3=198,7\)

CHÚC BẠN HỌC TỐT....

14 tháng 2 2018

Câu hỏi của Hạ Anh Thư - Toán lớp 7 | Học trực tuyến