Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)
Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)
Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng )
\(\Leftrightarrow\) ĐPCM
Áp dụng tính chất : 1/x+y < = 1/4.(1/x + 1/y) với x,y > 0 thì :
ab/c+1 = ab/c+a+b+c = ab/(c+a)+(c+b) < = ab/4.(1/c+a + 1/c+b) = 1/4.(ab/c+a + ab/c+b)
Tương tự : bc/a+1 < = 1/4.(bc/a+c + bc/a+b) ; ca/b+a < = 1/4.(ca/b+c + ca/b+a)
=> ab/c+1 + bc/a+1 + ca/b+1 < = 1/4.(ab/c+a + ab/c+b + bc/a+c + bc/a+b + ca/b+c + ca/b+a )
= 1/4.[(ab/c+a + bc/a+c) + (ab/c+b + ca/b+c) + (bc/a+b + ca/a+b)]
= 1/4.(a+b+c) = 1/4
=> ĐPCM
Tk mk nha
sgk à lên LoiGiaiHay.com vào toán lớp 8 là có cách giải bạn ạ
khong phai SGK