K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Theo bài ra ta có:

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(=\dfrac{bc+ac+ab}{abc}=bc+ac+ab\)

Ta lại có:

\(\left(a.b.c-1\right)+\left(a+b+c\right)-\left(bc+ca+ab\right)=0\)

\(=>\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(=>\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT.........

18 tháng 7 2017

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\\ \Leftrightarrow a+b+c=\dfrac{bc+ac+ab}{abc}\\ \Leftrightarrow a+b+c=bc+ac+ab\\ \Leftrightarrow a+b+c-ab-bc-ac+abc-1=0\\ -a\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)+\left(b-1\right)=0\\ \Leftrightarrow\left(b-1\right)\left(-a-c+ac+1\right)=0\\ \Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

3 tháng 5 2017

Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)

Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )

BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D

26 tháng 5 2017

Ôn tập cuối năm phần số học

30 tháng 5 2017

coi lại dấu " = " xảy ra khi nào dùm t ... , bài lm của m hay mak kl như cái qq ...

12 tháng 8 2017

Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)

Ta có

\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)

\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân (1), (2), (3) với nhau:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

20 tháng 4 2017

Từ (a-1)(b-1)(c-1)>0 (*)

<=>(ab-b-a+1)(c-1)>0

<=> abc-ab-bc+b-ac+a+c-1>0

<=> a+b+c-ab-ac-bc>0

<=> a+b+c-\(\dfrac{abc}{c}-\dfrac{abc}{b}-\dfrac{abc}{a}\)>0

<=> a+b+c - \(\dfrac{1}{c}-\dfrac{1}{b}-\dfrac{1}{a}>0\)

<=> \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 1)

(1) đúng => (*) đúng

12 tháng 8 2017

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)

Tương tự:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)

Nhân (1),(2) và (3) theo vế:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi a=b=c=1/2

28 tháng 2 2021

`1/a+1/b+1/c=1/(a+b+c)`

`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`

`<=>(a+b)(ab+ac+bc+c^2)=0`

`<=>(a+b)(a+c)(b+c)=0`

`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$

`=>` PT luôn tồn tại 2 số đối nhau