Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=1\)
\(\Rightarrow2ab+2ac+2bc=1-a^2-b^2-c^2\)
\(\Rightarrow2\left(ab+ac+bc\right)=1-a^2-b^2-c^2\)
Vì \(1-a^2-b^2-c^2< 1\)
\(\Rightarrow2\left(ab+ac+bc\right)< 1\)
\(\Rightarrow ab+ac+bc< \dfrac{1}{2}\)
Bài 1)
Áp dụng BĐT Bunhiacopxki ta có:
\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)
Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)
\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)
Bài 2)
Ta thấy:
\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)
\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)
Dấu bằng xảy ra khi \(ac=bd=\pm 1\) và \(cd=1\) ....
Bài 3)
Vế đầu:
\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)
Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)
BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.
Vế sau:
\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)
Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$
Dấu bằng xảy ra khi $a=b=c$
\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)
\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)
\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)
\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)
\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)
lần sau viết đề cẩn thận hơn nhé ! Bài 3 SGK trang 79 - Toán lớp 10 | Học trực tuyến
Cảm ơn đã trả lời nhưng mong bạn trình bày vs trình độ lớp 8
Đề nghị bạn đánh đề kỹ hơn!!
\(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\) với $a,b,c>0; ab+bc+ca=3$
\(\text{VP}-\text{VT}= \sum{\frac { \left( a-b \right) ^{2} \Big\{ c \left( 9\,{a}^{2}b+4 \,c{a}^{2}+9\,a{b}^{2}+4\,{b}^{2}c+16\,{c}^{3} \right) +3ab \Big\} }{27 \left( {a}^{2}+{b}^{2}+1 \right) \left( {b}^{2}+{c}^{2}+ 1 \right) \left( {a}^{2}+{c}^{2}+1 \right) }} \geqq 0\)
PS: Bài này quá tầm thường với SOS:v
<=>2ab+2bc+2ca<=1=1^2=(a+b+c)^2
<=>a^2+b^2+c^2+2ab+2bc+2ca>=2ab+2bc+2ca
<=>a^2+b^2+c^2>=0
a,b,c khong dong thoi =0
=> dang thuc khong xay ra
=> ab+bc+ca<1/2=>dpcm
(a+b+c)=1
a^2+b^2+c^2+2ab+2bc+2ca=1
a^^2+b^2+c^2>=0
=>2ab+2bc+2ca<=1
Đẳng thức khi (a+b+c=1 &0=> vô nghiệm
=> 2ab+2bc+2ca<1
=>ab+2bc+2ca<1/2
=>đpcm