K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Hình như bạn viết đề hơi ngược  mình nghĩ là :

Cho a,b,c khác 0 Chứng minh rằng : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Áp dụng BĐT AM - GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2.\frac{a}{c}\)

Tương tự có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\cdot\frac{b}{a}\)\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\cdot\frac{c}{b}\)

Khi đó : \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Hay : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

10 tháng 3 2020

ミ★NVĐ^^★彡a,b,c đã cho ko âm đâu???

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

29 tháng 9 2018

\(1)\)

\(a)\)\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(A=100+99+98+97+...+2+1\)

\(A=\frac{100\left(100+1\right)}{2}\)

\(A=5050\)

\(b)\)\(B=3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

\(............\)

\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(B=2^{128}-1+1\)

\(B=2^{128}\)

Chúc bạn học tốt ~ 

29 tháng 9 2018

\(1)\)

\(c)\)\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(C=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-2\left(a+b\right)^2\)

\(C=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)

\(C=2c^2\)

\(2)\)

\(a)\)\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(VP=a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)\)

\(VP=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)

\(VP=a^3+b^3=VT\) ( đpcm ) 

\(b)\)\(VT=a^3+b^3+c^3-3abc\)

\(VT=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(VT=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(VT=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\) ( đpcm ) 

Từ đó suy ra : 

\(i)\)\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)\(\Rightarrow\)\(a+b+c=0\)

Hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

Chúc bạn học tốt ~ 

22 tháng 9 2018

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

=> ĐPCM

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left(3a^2b+3abc+3ab^2\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

=> ĐPCM

P/s: Có sao sót xin bỏ qua

22 tháng 9 2018

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2\cdot c+3\left(a+b\right)c^2+c^3\)\(-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3a^2b+3ab^2+3\left(a^2+2ab+b^2\right)c\)\(+3ac^2+3bc^2-a^3-b^3-c^3\)

\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=\left(3abc+3a^2c+3b^2c+3bc^2\right)\)\(+\left(3a^2b+3a^2c+3ab^2+3abc\right)\)

\(=c\left(3ab+3ac+3b^2+3bc\right)\)\(+a\left(3ab+3ac+3b^2+3bc\right)\)

\(=\left(a+c\right)\left[\left(3ab+3b^2\right)+\left(3ac+3bc\right)\right]\)

\(=\left(a+c\right)\left[3b\left(a+b\right)+3c\left(a+b\right)\right]\)

\(=3\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)( do \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\))

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ab-ac\right)\)\(-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

11 tháng 7 2016

1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)

2. Cần sửa lại thành :  \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)

3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)

11 tháng 7 2016

tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày

16 tháng 8 2016

4 phút trước (20:01)

Cho a+b+c=0 

Tính M=a3+a2c-abc+b2c+b3

M=0