K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Cho ba số thực a,b,c dương

Áp dụng BĐT Cauchy Schwarz, ta được:

\(VT=\left(a+b+c\right)\left(\frac{9}{bc}+\frac{25}{c+a}+\frac{64}{a+b}\right)-98\ge\left(a+b+c\right)\left(\frac{256}{2\left(a+b+c\right)}\right)-98=30\)

\(\Leftrightarrow VT\ge30\)

Dấu '=' xảy ra khi \(\frac{8}{a+b}=\frac{5}{c+a}=\frac{3}{b+c}\)

\(\Leftrightarrow\frac{8}{a+b}=\frac{8}{a+b+2c}\)

hay c=0(vô lý)

=> Dấu bằng không xảy ra

=>ĐPCM

20 tháng 1 2021

Đặt \(\hept{\begin{cases}b+c=x>0\\c+a=y>0\\a+b=z>0\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{z+x-y}{2}\\x=\frac{x+y-z}{2}\end{cases}}\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{9\left(y+z-x\right)}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{64\left(x+y-z\right)}{2z}>30\)

Ta có: \(VP=\frac{9y}{2x}+\frac{9z}{2x}-\frac{9}{2}+\frac{25z}{2y}+\frac{25x}{2y}-\frac{9}{2}+\frac{32x}{z}+\frac{32y}{z}-32\)

\(=\left(\frac{9y}{2x}+\frac{25x}{2y}\right)+\left(\frac{9z}{2x}+\frac{32x}{z}\right)+\left(\frac{25z}{2y}+\frac{32y}{z}\right)-41\)

\(\ge2\cdot\frac{15}{2}+2\cdot12+2\cdot20-41=38>30\)

\(\Rightarrow\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\)

20 tháng 3 2016

đề có cho thêm dữ kiện gì nữa k

16 tháng 10 2019

Áp dụng BĐT Cauchy dạng phân thức :
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{9}{ab+bc+ac}\)

\(\Rightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ac}\)

\(\Leftrightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{7}{ab+ac+bc}\)

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\Rightarrow\frac{7}{ab+bc+ac}\ge21\left(1\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\)

\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\)  (2)

Từ (1) và (2) 

\(\Rightarrow VT\ge21+9=30\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

15 tháng 1 2020

Trl 

Bn hoàng việt nhật lm đúng r nhé :3

hok tốt

1 tháng 8 2018

Áp dụng BĐT AM-GM ta có: 

\(\frac{a^2}{b+c}+\frac{b+c}{\frac{9}{4}}+\frac{b^2}{c+a}+\frac{a+c}{\frac{9}{4}}+\frac{16c^2}{a+b}+a+b\)

\(\ge2\sqrt{\frac{a^2}{b+c}\cdot\frac{b+c}{\frac{9}{4}}}+2\sqrt{\frac{b^2}{c+a}\cdot\frac{a+c}{\frac{9}{4}}}+2\sqrt{\frac{16c^2}{a+b}\cdot\left(a+b\right)}=\frac{4a+4b}{3}+8c\)

Suy ra 

\(VT\ge\frac{4a+4b}{3}+8c-\frac{b+c}{\frac{9}{4}}-\frac{c+a}{\frac{9}{4}}-\left(a+b\right)=\frac{64c-a-b}{9}=VP\)

Dấu "=" khi \(a=b=2c\) 

Bài này bạn cũng chú ý tới dấu "=" là xong nhé.

19 tháng 7 2020

Áp dụng Cauchy Schwarz ta dễ có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=30\)

Đẳng thức xảy ra tại a=b=c=1/3

20 tháng 7 2020

giúp em hiểu chỗ \(\frac{7}{ab+bc+ca}\Rightarrow\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Áp dụng hệ quả quen thuộc của BĐT AM-GM:

$3(ab+bc+ac)\leq (a+b+c)^2$

$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$

Do đó:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)

\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)

\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)

Cộng 2 BĐT trên lại:

\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Áp dụng hệ quả quen thuộc của BĐT AM-GM:

$3(ab+bc+ac)\leq (a+b+c)^2$

$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$

Do đó:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)

\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)

\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)

Cộng 2 BĐT trên lại:

\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$