K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0

=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2

( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4 

=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4

=> a^2 . b^2  + b^2 . c^2 + c^2 . a^2  + 2abc . 0 = 1/4

=> 2( a^2 . b^2 +  + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2 

=> 2a^2 . b^2 +  2 b^2 . c^2 + 2c^2 . a^2 = 1/2  

( a^2 + b^2 + c^2 )^2 = 1

=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1

=> a^4 + b^ 4 + c^4 + 1/2 = 1 

=> a^4 + b^4 + c^4 = 1/2

7 tháng 7 2019

(a+b+c)2 = 0

<=> a+ b+ c2 + 2ab + 2bc + 2ac = 0

<=> 2ab + 2bc + 2ac = -1

<=> ab + bc + ac = -1/2

<=> a2b+ b2c2 + c2a2 + 2ab2c + 2abc2 + 2a2bc = 1/4

<=> a2b2 + b2c2 + c2a2 + 2abc(a+b+c) = 1/4

<=> a2b2 + b2c2 + c2a2 = 1/4

(a+ b+ c2)2 = 1

<=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 1

<=> a4 + b+ c+ 2.1/4 = 1

<=> a4 + b+ c= 1 - 1/2 = 1/2.

Vậy M = 1/2

1 tháng 7 2015

a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0

=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2

( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4 

=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4

=> a^2 . b^2  + b^2 . c^2 + c^2 . a^2  + 2abc . 0 = 1/4

=> 2( a^2 . b^2 +  + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2 

=> 2a^2 . b^2 +  2 b^2 . c^2 + 2c^2 . a^2 = 1/2  

( a^2 + b^2 + c^2 )^2 = 1

=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1

=> a^4 + b^ 4 + c^4 + 1/2 = 1 

=> a^4 + b^4 + c^4 = 1/2

30 tháng 6 2015

\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)

\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)

\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)

30 tháng 6 2015

 

\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)

\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)

\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)

 

 

7 tháng 10 2016

Bài 1 :

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0^2\)

\(a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Rightarrow\left[a^2+b^2+c^2\right]^2=\left[-2\left(ab+bc+ac\right)\right]^2\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab.bc+2bc.ac+2ab.ac\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)

Mà \(a+b+c=0\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)

Bớt cả 2 vế đi \(2a^2b^2+2a^2c^2+2b^2c^2;\)có :

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)

Cộng cả 2 vế với \(a^4+b^4+c^4;\)có :

\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)( Hằng đẳng thức bình phương tổng 3 hạng tử )

Vậy ...

7 tháng 10 2016

Bình phương cả 2 vế của a + b + c = 0,ta có :

a+ b2 + c2 + 2(ab + bc + ca) => a2 + b2 + c2 = -2(ab + bc + ca).Bình phương cả 2 vế của đẳng thức bên,ta có :

a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4[a2b2 + b2c+ a2c2 + 2abc(a + b + c)] = 4(a2b2 + b2c2 + a2c2)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2

=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = a4 + b4 + c4 + a4 + b4 + c4 = 2(a4 + b4 + c4

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

12 tháng 11 2016

a = - (b + c)

<=> a2 = b2 + c2 + 2bc

<=> a2 - b2 - c2 = 2bc

<=> a4 + b4 + c4 + 2(b2 c2 - a2 b2 - a2 c2) = 4b2 c2

<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2 = 1

<=> a4 + b4 + c4 = 0,5

12 tháng 11 2016

trả lời rõ hơn đk k pn?

10 tháng 9 2015

a+ b + c = 0 => (a+ b+ c)2 = 0 => a+ b2 + c+ 2(ab + bc + ca) = 0 => ab + bc + ca = -1/2

Ta có: (ab + bc + ca)2 = a2b+ c2.b+ a2.c2 + 2abc.(a + b + c) 

=> (-1/2)2 =  a2b+ c2.b+ a2.c2 + 0 => a2b+ c2.b+ a2.c2 = 1/4

Ta có: (a2 + b+ c2) = a4 + b+ c4 + 2(a2b+ c2.b+ a2.c2) => 1 = M + 2. 1/4 => M = 1-1/2 = 1/2

Vậy M = 1/2

2 tháng 8 2016

Ta có: ab+ac+bc=-7                        (ab+ac+bc)2=49

nên (ab)2+(bc)2+(ac)2=49

nên a4+b4+c4=(a2+b2+c2)2−2(ab)2−2(ac)2−2(bc)2=98

đề Cho a, b, c thoả mãn: a+b+c = 0 và a2 + b2 + c2= 14.

Tính giá trị của A = a4+ b4+ c4

Đây là bài tuong tự bn cứ dựa vào đó mà làm

2 tháng 8 2016

Die Devil copy ở link http://diendantoanhoc.net/topic/124599-cho-a-b-c-tho%E1%BA%A3-m%C3%A3n-abc-0-v%C3%A0-a2-b2-c2-14-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-c%E1%BB%A7a-a-a4-b4-c4/