Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=2+2\left(ab+bc+ac\right)\)
=> \(0=2+2\left(ab+bc+ac\right)\)=> \(ab+bc+ca=-1\)
=> \(\left(ab+bc+ac\right)^2=1\)
Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+a^2bc+abc^2\right)\)
\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+a^2c^2\)
=> \(a^2b^2+b^2c^2+c^2a^2=1\)
Mặt khác : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
=> \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
=> \(a^4+b^4+c^4=4-2=2\)
Ta có :
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2 bc+ 2ac = 0
Mà a2 + b 2 + c2 = 1
=> 2ab + 2bc + 2ac = - 1
=> ab + bc + ac = \(\frac{-1}{2}\)
=> ( ab + bc + ac ) 2 = a2b2 + a2c2 + b2c 2 + 2ab2c + 2ac2b + 2a2bc = \(\left(\frac{-1}{2}\right)^2\)=\(\frac{1}{4}\)
=> a2b2 + a2c2 + b2c2 + 2abc ( a + b +c ) = \(\frac{1}{4}\)
mà a + b + c = 0 => 2abc ( a +b +c ) = 0
=> a2b2 + b2c2 + c2a2 = \(\frac{1}{4}\)
Ta có : ( a2 + b2 + c2 )2 = a4 + b4 + c4 + 2 ( a2b2 + b2c2 + c2a2 ) = 1
=> a4 +b4 + c4 + 2. \(\frac{1}{4}\) = 1
=> a4 + b4 + c4 = 1 - \(\frac{1}{2}\)
=> a4 + b4 + c4 = \(\frac{1}{2}\)
- Ta có : \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{4}{2}=-2\)
- Ta có ; \(\left(a^2+b^2+c^2\right)^2=16\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=16\)
\(\Leftrightarrow a^4+b^4+c^4=16-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Mặt khác : \(\left(ab+bc+ac\right)^2=4\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=4\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=4\)
\(\Rightarrow a^4+b^4+c^4=16-2.4=8\)
Ta có a + b + c = 0
<=> (a + b + c)2 = 0
<=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
<=> ab + bc + ca = \(-\frac{1}{2}\)
=> \(\left(ab+bc+ca\right)^2=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab^2c+2a^2bc+2abc^2=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\frac{1}{4}\)
Lại có a2 + b2 + c2 = 1
=> (a2 + b2 + c2)2 = 1
<= > a4 + b4 + c4 + 2[(ab)2 + (bc)2 + (ca)2] = 1
<=> \(a^4+b^4+c^4+2.\frac{1}{4}=1\)
<=> \(a^4+b^4+c^4=\frac{1}{2}\)
Từ a + b + c = 0 => ( a + b + c )2 = 0 <=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
<=> ab + bc + ca = -1/2 => ( ab + bc + ca )2 = 1/4
<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc = 1/4
<=> a2b2 + b2c2 + c2a2 + 2abc( a + b + c ) = 1/4
<=> a2b2 + b2c2 + c2a2 = 1/4 ( vì a + b + c = 0 )
Từ a2 + b2 + c2 = 1 => ( a2 + b2 + c2 )2 = 1 <=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 1
<=> a4 + b4 + c4 + 2( a2b2 + b2c2 + c2a2 ) = 1
<=> a4 + b4 + c4 + 1/2 = 1 <=> a4 + b4 + c4 = 1/2
Vậy A = 1/2
a: ĐKXĐ: x<>2; x<>-2
b: \(A=\dfrac{3x\left(x-2\right)+2x+6}{2\left(x-2\right)\left(x+2\right)}=\dfrac{3x^2-6x+2x+6}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x^2+4x+6}{2\left(x-2\right)\left(x+2\right)}\)
c: Khi x=-3 thì \(A=\dfrac{3\cdot\left(-3\right)^2-4\cdot3+6}{2\left(-3-2\right)\left(-3+2\right)}=\dfrac{21}{10}\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: Để A>0 thì x-3>0
hay x>3
a+b+c = 0 <=> (a+b+c)^2 = 0
<=> 2(ab+bc+ca) = 0 - (a^2+b^2+c^2) = 0 - 1 = -1
<=> ab+bc+ca = -1/2
<=> (ab+bc+ca)^2 = 1/4
<=> a^2b^2+b^2c^2+c^2a^2 = 1/4 - 2abc.(a+b+c) = 1/4 - 0 = 1/4
Có : a^2+b^2+c^2 = 1
<=> (a^2+b^2+c^2) = 1
<=> A = a^4+b^4+c^4 = 1 - 2.(a^2b^2+b^2c^2+c^2a^2) = 1 - 2.1/4 = 1/2
Vậy A = 1/2
k mk nha