K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a3+a2c-abc+b2c+b3=a2(a+b+c)-a2b-abc+b2c+b3

=a2.0+b2(a+b+c)-a2b-abc-b2a

=0+b2.0-ab(a+b+c)=0+0-0=0

vậy a3+a2c-abc+b2c+b3=0

16 tháng 8 2016

4 phút trước (20:01)

Cho a+b+c=0 

Tính M=a3+a2c-abc+b2c+b3

M=0

17 tháng 7 2018

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(=a^3+b^3+a^2c+b^2c-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

Do  \(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+c=-b\\b+c=-a\end{cases}}\)

suy ra:  \(M=-a^2b-ab^2-abc\)

                   \(=-ab\left(a+b+c\right)=0\)   (do a+b+c = 0)

4 tháng 11 2015

Ta có: a^3 + a^2c – abc + b^2c + b^3 = (a^3 + b^3) + (a^2c – abc + b^2c) = (a + b)( a^2 – ab + b^2) + c(a62 – ab + b^2) = (a + b + c)(a^2 – ab + b^2) = 0 ( Vì a + b + c = 0 theo giả thiết) Vậy: a3 +a2c – abc + b2c + b3 = 0