K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

a+b+c=0

=>a2+b2+c2+2ab+2bc+2ca=0

=>a2+b2+c2=-2(ab+bc+ca)

=>(a2+b2+c2)2=(-2ab-2bc-2ca)2

=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)

=>a4+b4+c4= 2(a2b2+b2c2​+c2a2)

17 tháng 1 2018

Ta có a^2 + b^2 + (a - b)^2= c^2 + d^2 + (c - d)^2.
=> a^4+b^4+(a-b)^4+2[a^2b^2+a^2(a-b)^2+b^2(a-b)2]=

=c^4+d^4+(c-d)^4+2[c^2d^2+c^2(c-d)^2+d^2(c-d)^2

<=>a^4+b^4+(a-b)^4+2[a^2b^2+(a^2+b^2)(a-b)^2]

=c^4+d^4+(c-d)^4+2[c^2d^2+(c^2+d^2)(c-d)^2

Lại có a^2 + b^2 + (a - b)^2 = c^2 + d^2 + (c - d)^2.

=> 2(a^2+b^2-ab) =2(c^2+d^2-cd)

=>a^2+b^2-ab =c^2+d^2-cd

=>(a^2+b^2)2+a^2b^2-2ab(a^2+b^2)=(c^2+d^2)^2+c^2d^2-2cd(c^2+d^2).

=>a^2b^2+(a^2+b^2)(a^2+b^2-2ab)=c^2d^2+(c^2+d^2)(c^2+d^2-2cd)

=>a^2b^2+(a^2+b^2)(a-b)^2=c^2d^2+(c^2+d^2)(c-d)^2

Từ đó bạn sẽ có đpcm

25 tháng 1 2018

Cảm ơn bạn,mình làm được rồi

Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0 
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c

 

5 tháng 8 2017

Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0 
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c

24 tháng 12 2019

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

24 tháng 12 2019

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)

20 tháng 5 2020

sai sai

15 tháng 7 2015

\(a+b+c=0\Rightarrow\left(a+b\right)=-c\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\Leftrightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

Ta có: \(\left(a^2+b^2-c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2-b^2c^2-c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=\left(-2ab\right)^2-2a^2b^2+2b^2c^2+2c^2a^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (đpcm).