Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho bạn nè: https://olm.vn/hoi-dap/question/108981.html
vào đó mà xem nha...
Từ a+b+c=0 có b+c =-a
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2
hay b^2 + c^2 -a^2 = -2bc
Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2): Đpcm
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
Theo đề ta có:
a+b+c=0 => c=-(a+b) (1)
Thay (1) vao a^3+b^3+c^3 ta có:
a3+b3+[-(a+b)]3=3ab[-(a+b)]
<=>a3+b3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.
b) có a+b+c = 0
=> a2+b2+c2+2(ab+bc+ac) = 0
mà a2+b2+c2 = 2
=> ab+bc+ac = -1
=> a2b2+b2c2+a2c2 + 2ab2c+2a2bc+2abc2 = 1
=>a2b2+b2c2+a2c2 + 2abc(b+a+c) = 1
=>a2b2+b2c2+a2c2 = 1
Ta bìn phong cái a2+b2+c2 len
đk là
a4+b4+c4 + 2a2b2+2a2c2+2b2c2=4
=> a4+b4+c4 + 2(a2b2+a2c2+b2c2) = 4
mà ở trên là a2b2+b2c2+a2c2 = 1
=> a4+b4+c4 +1 =4
a4+b4+c4 = 3 D
k giùm nha!!!
a ) Ta có : \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+ac+bc\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2c^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)+8abc.0\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Lại có : \(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}=\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}\)
\(=\dfrac{a^4+b^4+c^4+a^4+b^4+c^4}{2}=\dfrac{2\left(a^4+b^4+c^4\right)}{2}\)
\(=a^4+b^4+c^4\left(đpcm\right)\)
b ) \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3+3a^2b+3b^2a+3c^2d+3d^2c=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(-a^2b-b^2a-c^2d-d^2c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[ab\left(c+d\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\left(đpcm\right)\)
1.
Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)
\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm