Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a+b+c\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)\(=a^3+3a^2b+3ab^2+b^3+c^3=0\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)\(=a^3+b^3+c^3=-3ab.-c\)
\(=a^3+b^3+c^3=3abc\Rightarrowđpcm\)
Ta cm \(a^3+b^3+c^3=3abc\) là đúng khi \(a+b+c=0\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(\Leftrightarrow\) \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)(điều này đúng vì a+b+c=0)
\(\Rightarrow\) \(a^3+b^3+c^3=3abc\)
a, ta có : (a+b)3- 3ab(a+b)=a3+3a2b+3ab2+b3-3a2b-3ab2
=a3+b3(đpcm)
a)\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c^3-3abc\)
=\(\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)-2abc-ca^2-cb^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(abc+b^2c+bc^2+ca^2+abc+c^2a\right)+c^3+ac^2+bc^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(a+b+c\right)\cdot\left(bc+ca\right)+c^2\cdot\left(a+b+c\right)\)
=\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Chúc bạn học tốt!
a, a^3 + b^3=(a + b)^3 - 3a2b - 3ab2=(a + b)^3 - 3ab(a + b)
b, a^3 + b^3 + c^3 - 3abc= (a + b)^3 + c3 - 3ab(a + b)-3abc
=(a + b + c)\([\)(a + b)2- (a + b)c +c2\(]\)- 3ab(a + b + c)
=(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab)
=(a + b + c)(a2 + b2 + c2 - ab - bc- ca)
a) VP = (a+b)3 - 3ab(a+b)
=[a3 + b3 + 3ab(a+b)] - 3ab(a+b)
= a3 + b3 = VT
b)
a3+b3+c3−3abc
=(a+b)3+c3−3a2b−3ab2−3abc
=(a+b+c)3[(a+b)2−(a+b)c+c2]−3ab(a+b)−3abc
=(a+b+c)(a2+b2+2ab−ac−bc+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+2ab−ac−bc+c2−3ab)
=(a+b+c)(a2+b2+c2-ab-bc-ca) (đpcm)
nhớ đúng cho mk nha !!!!!
\(1)\)
\(a)\)\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=100+99+98+97+...+2+1\)
\(A=\frac{100\left(100+1\right)}{2}\)
\(A=5050\)
\(b)\)\(B=3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^8+1\right).....\left(2^{64}+1\right)+1\)
\(............\)
\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(B=2^{128}-1+1\)
\(B=2^{128}\)
Chúc bạn học tốt ~
\(1)\)
\(c)\)\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(C=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-2\left(a+b\right)^2\)
\(C=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)
\(C=2c^2\)
\(2)\)
\(a)\)\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(VP=a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)\)
\(VP=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)
\(VP=a^3+b^3=VT\) ( đpcm )
\(b)\)\(VT=a^3+b^3+c^3-3abc\)
\(VT=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(VT=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(VT=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\) ( đpcm )
Từ đó suy ra :
\(i)\)\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)\(\Rightarrow\)\(a+b+c=0\)
Hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
Chúc bạn học tốt ~
a) sau khi nhân vô + rút gọn ( câu này gg có á)
P = a3 + b3 + c3 - 3abc
b) a3 + b3 + c3 = 3abc?
a3 + b3 + c3 - 3abc = 0
theo câu b)
(a + b + c)(a2 + b2 + c2 - ab - bc - ca) =0
\(\Rightarrow\) a+b+c=0 hoặc
a2 + b2 + c2 - ab - bc -ca = 0
a2 - 2ab +b2 +b2 - 2bc + c2 + c2 - 2ac +a2 =0
(a-b)2 + (b-c)2 + (c-a)2 = 0
\(\Rightarrow\) a=b=c
hki Qqwwqe tại sao a2 - 2ab + b2 +b2 -2bc +c2+c2-2ac +a2=0
\(a+b+c=0\)
=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)