K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Ta có :

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\) ( Luôn đúng vì \(a+b+c=0\) )

Wish you study well !!

22 tháng 8 2019

Solution:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=a^2\cdot\left(-b\right)+b^2\cdot\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)\)

\(=0\)

22 tháng 8 2019

Ta có:

\(a^3+a^2c-abc+b^2c+b^3=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)

\(a+b+c=0\) nên \(a^3+a^2c-abc+b^2c+b^3=0\)

24 tháng 10 2016

Ta có:

\(A=a^3+a^2c-abc+b^2c+b^3=0\Rightarrow\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)=0\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)

Mà theo giả thiết thì \(a+b+c=0\Rightarrow A=0\)

P/s: Lười ghi nên đổi thành A nhé ;)

5 tháng 8 2019

THam khảo:

Phép nhân và phép chia các đa thức

16 tháng 6 2016

a) Ta có:

(a + b)2 >= 0 => a2 + b2 >= -2ab

(a - 1)2 >= 0 => a2 + 1 >= 2a

(b - 1)2 >= 0 => b2 + 1 >= 2b

Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b

Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:

a2 + b2 + 1 > -ab + a + b      .đpcm.

b) a + b + c = 0 => a + b = -c => (a + b)3 = -c => a3 + 3a2b +3 ab2 + b3 = -c3

=> a3 + b3 + c3 = -3ab(a + b)   (*)

Mà a + b + c = 0 => a + b = -c 

=> (*) <=>  a3 + b3 + c3 = 3abc     .đpcm.

21 tháng 7 2017

Ta có: \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\end{matrix}\right.\)

Lại có: \(a^3+a^2c-abc+b^2c+b^3\)

\(=a^2\left(a+c\right)+b^2\left(c+b\right)-abc\)

\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)=\left(-ab\right).0=0\) (đpcm)

9 tháng 6 2015

1)a)ta có :(a+b)[(a-b)2+ab]=(a+b)(a2-2ab+b2+ab)

                                  =(a+b)(a2-ab+b2)

                                 =a3+b3

b) ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc

9 tháng 6 2015

baj này bạn cho dùng hằng đẳng thức ko

14 tháng 7 2019

1.từ bt trên ta có thể suy ra

=a^2+c^2+b^2+2ab+2ac+2bc+a^2+b^2+c^2

=(a+b)^2+(b+c)^2+(a+c)^2

12 tháng 6 2018

\(a)\) Ta có : 

\(a+b+c=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm ) 

Vậy \(a^3+b^3+c^3=3abc\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

a, a+b+c=0 => a+b=-c 

=>(a+b)3=(-c)3

=>a3+3a2b+3ab2+b3=-c3 

=>a3+3ab(a+b)+b3=-c3

Mà a+b=-c

=>a3-3abc+b3=-c3

=>a3+b3+c3=3abc (đpcm)

b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

mà a3+b3+c3=3abc (bài a)

\(\Rightarrow P=\frac{3abc}{abc}=3\)

Vậy P=3