K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Giải:

Ta có:

\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^5=\left(-c\right)^5\)

\(\Leftrightarrow a^5+b^5+5ab\left(a^3+2a^2b+2ab^2+b^3\right)=\left(-c\right)^5\)

\(\Leftrightarrow a^5+b^5+c^5=-5ab\left[\left(a+b\right)\left(a^2+b^2-ab\right)+2ab\left(a+b\right)\right]\)

\(=-5ab\left(a+b\right)\left(a^2+b^2+ab\right)\)

\(\Leftrightarrow2\left(a^5+b^5+c^5\right)=5abc\left(2a^2+2b^2+2ab\right)\)

\(=5abc\left[a^2+b^2+\left(a+b\right)^2\right]=5abc\left(a^2+b^2+c^2\right)\) (Đpcm)

10 tháng 8 2018

tham khảo Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath

25 tháng 9 2018

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)( do a + b + c = 0 )

\(\Rightarrow a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)=\)\(3abc\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^5+b^5+c^5+a^3\left(b^2+c^2\right)+b^3\left(a^2+c^2\right)\)\(+c^3\left(a^2+b^2\right)=3abc\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^5+b^5+c^5+a^3\left(a^2-2bc\right)+b^3\left(b^2-2ac\right)\)\(+c^3\left(c^2-2ab\right)=3abc\left(a^2+b^2+c^2\right)\)

       ( do \(b^2+c^2=\left(b+c\right)^2-2bc=\left(-a\right)^2-2bc=a^2-2bc\))

\(\Rightarrow2\left(a^5+b^5+c^5\right)-2a^3bc-2b^3ac-2c^3ab\)\(=3abc\left(a^2+b^2+c^2\right)\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)\)\(=3abc\left(a^2+b^2+c^2\right)\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

6 tháng 8 2019

Ta có:

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^5=-c^5\)

\(\Rightarrow a^5+5a^4b+10a^3b+10a^2b^3+5ab^4+b^5=-c^5\)

\(\Rightarrow a^5+b^5+c^5=5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)

\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)

\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)

\(\Rightarrow a^5+b^5+c^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)

\(\Rightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)

\(\Rightarrowđpcm\)