K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(ab-ac+bc-c^2=-1\)

<=> \(a\left(b-c\right)+c\left(b-c\right)=-1\)

<=> \(\left(a+c\right)\left(b-c\right)=-1\)

Mà \(a,b,c\in Z\Rightarrow\left\{{}\begin{matrix}a+c\in Z\\b-c\in Z\end{matrix}\right.\)

- Nếu \(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\) => a + b = 0

- Nếu \(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\) => a + b = 0

Vậy M = 0

9 tháng 2 2022

thoi chuyển box toán lun duy cho zui ah

22 tháng 2 2020

\(ab=bc=ca\Rightarrow\frac{ab}{abc}=\frac{bc}{abc}=\frac{ca}{abc}\)

\(\Rightarrow\frac{1}{c}=\frac{1}{a}=\frac{1}{b}\Rightarrow a=b=c\)

\(\Rightarrow M=\left(\frac{a}{b}\right)^{2016}-\left(\frac{c}{a}\right)^{2017}\)

\(=\left(\frac{a}{a}\right)^{2016}-\left(\frac{a}{a}\right)^{2017}\)

\(=1^{2016}-1^{2017}\)

\(=1-1=0\)