Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=8cm
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)
c: Xét ΔAHC vuông tại H có HK là đường cao
nên \(AH^2=AK\cdot AC\)
Áp dụng các hệ thức lượng trong tam giác vuông ,ta được:
\(AH^2=BH.CH\)
\(AH.BC=AB.AC\)
Lớp 8 chưa học lượng giác mà??
a) Xét tam giác AHC vuông tại H và tam giác AHB vuông tại H
Áp dụng định lý Pytago cho cả 2 tam giác:
Tam giác AHC: AH^2= AC^2 - CH^2 (1)
TAM GIÁC AHB: AH^2 =AB^2 - BH^2 (2)
(1) (2) Suy ra 2AH^2 = AB^2 + AC^2 - CH^2 - BH^2
2AH^2 = BC^2 - CH^2 - BH^2
2AH^2 = (BH+CH)^2 - CH^2 - BH^2
2AH^2 = 2BH.CH
AH^2 = BH.CH
b) Xét tam giác AHB và tam giác CAB:
H^ = A^ = 90 độ
B^ chung
2 tam giác AHB và tam giác CAB đồng dạng trường hợp (g-g)
Suy ra AH/CA = HB/AB= AB/BC
Vậy AH.BC = AB.AC
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
Do đó: ΔABH\(\sim\)ΔCBA
Suy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc C chung
Do đo: ΔACH\(\sim\)ΔBCA
Suy ra: CA/CB=CH/CA
hay \(CA^2=CH\cdot CB\)
b: \(BC^2=AB^2+AC^2\)
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
Suy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
Phần a là HBA ~ ABC chứ nhỉ?
a, Xét tam giác HBA và tam giác ABC có:
góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)
góc B chung
\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)
b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)
Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)
Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC
\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)
Vì \(\Delta\)HAC ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)
c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA
\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)
BC2 = 152 + 202
BC2 = 625
BC = \(\sqrt{625}\) = 25 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)
hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)
Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)HAC (cmt)
\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)
\(\Rightarrow\) \(AH^2=16\cdot9=144\)
\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)
d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)
\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)
hay \(\frac{20-CD}{15}=\frac{CD}{25}\)
\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)
\(\Rightarrow\) 5(20 - CD) = 3CD
\(\Leftrightarrow\) 100 - 5CD = 3CD
\(\Leftrightarrow\) 3CD + 5CD = 100
\(\Leftrightarrow\) 8CD = 100
\(\Leftrightarrow\) CD = 12,5 (cm)
\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)
e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!
Xét tam giác CMD và tam giác CAB có:
góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)
góc C chung
\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)
\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)
Chúc bn học tốt!! (Dài quá :vvv)
a) Xét ΔHBA và ΔABC có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\) chung
Do đó: ΔHBA∼ΔABC(g-g)(1)
Xét ΔHAC và ΔABC có
\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\) chung
Do đó: ΔHAC∼ΔABC(g-g)(2)
Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)
b) Ta có: ΔHBA∼ΔABC(cmt)
⇒\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)
hay \(AB^2=BC\cdot BH\)(đpcm)
Ta có: ΔHAC∼ΔABC(cmt)
⇒\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)
hay \(AC^2=BC\cdot HC\)(đpcm)
Ta có: ΔHBA∼ΔHAC(cmt)
⇒\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)
hay \(HA^2=HB\cdot HC\)(đpcm)
c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
⇔\(BC^2=15^2+20^2=625\)
hay \(BC=\sqrt{625}=25cm\)
Ta có: \(AB^2=BC\cdot BH\)(cmt)
⇔\(15^2=25\cdot BH\)
⇔\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)
Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)
⇔\(\frac{HA}{15}=\frac{20}{25}\)
⇔\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)
Vậy: BC=25cm; BH=9cm; HA=12cm
d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)
hay \(\frac{AD}{15}=\frac{CD}{25}\)
Ta có: AD+CD=AC(D nằm giữa A và C)
hay AD+CD=20cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)
Vậy: AD=7,5cm; CD=12,5cm
e) Đề sai rồi bạn