K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF // BC, EF = 1/2  BC.

Xét tam giác BDC có: HB = HD, GD = GC (gt)

Nên HG // BC, HG =  1/2  BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

c)  EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

3 tháng 11 2017

A E O F B M C N

a)  Do tam giác ABC cân tại A có AM là trung tuyến nên AM là đường cao.

Xét tam giác vuông ABM có ME là trung tuyến ứng với cạnh huyền nên \(EA=EM\)

Tương tự FM = FA

Lại có tam giác ABC cân tại A nên AB = AC hay AE = AF. Suy ra AE = EM = MF = FA hay AEMF là hình thoi.

b) Xét tứ giác AMBN có EA = EB; EM = EN nên AMBN là hình bình hành.

Lại có \(\widehat{AMB}=90^o\Rightarrow\) AMBN là hình chữ nhật.

Xét tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình của tam giác.

Hay EF // BC

Vậy BEFC là hình thang. Lại có \(\widehat{EBC}=\widehat{FCB}\) nên BEFC là hình thang cân.

c)  Do AMBN là hình chữ nhật nên NA song song và bằng BM. Suy ra NA cũng song song và bằng MC.

Xét tam giác ANMC có AN song song và bằng MC nên NACM là hình bình hành.

Vậy AM và NC cắt nhau tại trung điểm mỗi đường. Do O là trung điểm AM nên O là trung điểm NC.

d) Tứ giác AEMF là hình thoi. Để nó là hình vuông thì \(\widehat{EAF}=90^o\) hay tam giác ABC vuông cân tại A.