K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow AB^2=HB\cdot BC\)(đpcm)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow AH^2=HB\cdot HC\)(đpcm)

18 tháng 4 2017

cm \(\Delta ABH\approx\Delta CAH\left(g.g\right)\)

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{HA}\Leftrightarrow AH^2=HB.HC\left(đpcm\right)\)

\(\frac{S_{ABH}}{S_{CAH}}=\frac{\frac{AH.BH}{2}}{\frac{AH.HC}{2}}=\frac{BH}{HC}=\frac{4}{9}\)

ko bít có cho đoạn thẳng nào ko ko cho ko làm đc đâu

20 tháng 11 2019

Xét hai tam giác vuông ABH và CAH có:

       \(\widehat{ABH}=\widehat{HAC}\)(cùng phụ với \(\widehat{BAH}\))

Do đó \(\Delta ABH\approx\Delta CAH\)

Suy ra \(\frac{AH}{HB}=\frac{HC}{AH}\Rightarrow AH^2=HB.HC\left(đpcm\right)\)

30 tháng 7 2020

A B C H

a) \(\Delta BHA~\Delta BAC\left(g.g\right)\)vì:

\(\hept{\begin{cases}\widehat{ABH}=\widehat{CBA}\left(gt\right)\\\widehat{BHA}=\widehat{BAC}=90^0\end{cases}}\)

\(\Rightarrow\frac{BH}{BA}=\frac{BA}{BC}\Leftrightarrow BA^2=BH.BC\)

b) Mình nghĩ đề là CM: AH2 = HB . HC nhé

\(\Delta HBA~\Delta HAC\left(g.g\right)\)vì:

\(\hept{\begin{cases}\widehat{HBA}=\widehat{HAC}=90^0-\widehat{C}\\\widehat{AHC}=\widehat{BHA}=90^0\end{cases}}\)

\(\Rightarrow\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=HB.HC\)

30 tháng 7 2020

a,Xét \(\Delta ABH\)và \(\Delta CBA\)

\(\widehat{B}\)chung 

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\Rightarrow\Delta ABH\infty\Delta CBA\left(g-g\right)\)

\(\Rightarrow\frac{BA}{BC}=\frac{BH}{BA}\)(cặp cạnh tỉ lệ)  \(\Leftrightarrow BA^2=BH.BC\left(đpcm\right)\)

b,Sửa lại đề: Chứng minh \(AH^2=HB.HC\) 

VÌ \(\Delta ABH\infty\Delta CBA\left(cmt\right)\Rightarrow\widehat{HAB}=\widehat{ACB}\)(2 góc tương ứng )

hay \(\widehat{HAB}=\widehat{HCA}\)

Xét \(\Delta ABH\)và \(\Delta CAH\)có:

\(\widehat{HAB}=\widehat{HCA}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\)(cặp cạnh tỉ lệ )

\(\Rightarrow AH^2=BH.CH\left(đpcm\right)\)

Học tốt 

25 tháng 2 2020

a) Xét tam giác ABC và tan giác HBA, ta có: 

\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)

\(\widehat{B}\)là góc chung

   => Tam giác ABC ~ tam giác HBA (g-g)

   =>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)

Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)

   <=> AB . AB = BC . BH

   <=> \(AB^2\)= BC . BH

b) Xét tam giác ABC và tam giác HAC, ta có:

\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)

\(\widehat{C}\)là góc chung

   => Tam giác ABC ~ tam giác HAC (g-g)

Mà tam giác ABC ~ tam giác HBA (cmt)

   => Tam giác HBA ~ tam giác HAC (tính chất)

  => \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)

Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)

   <=> AH . AH = HB . HC

   <=> \(AH^2\)= HB . HC

c) Tam giac ABC vuong tai A co:

\(BC^2\)\(AB^2\)+\(AC^2\)(Pytago)

\(BC^2\)\(6^2\)+\(8^2\)

\(BC^2\)= 100

   <=> BC =\(\sqrt{100}\)(BC > 0)

   <=> BC = 10 (cm)

Mat khac: BC = HB + HC

    Tam giac HAC vuong tai H co:

\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)

\(8^2\)= HB . HC + \(HC^2\)

64 = HC (HB + HC)

64 = HC . BC

64 = HC . 10

   => HC = 6,4 (cm)

Ma BC = HB + HC

   => 10 = HB + 6,4

   <=> HB = 3,6 (cm)

   Ta co:

\(AH^2\)= HB . HC (cmt)

   =>\(AH^2\)= 3,6 . 6,4

   <=> \(AH^2\)= 23,04

   <=> AH = \(\sqrt{23,04}\)(AH > 0)

   <=> AH = 4,8 (cm)

17 tháng 5 2021

A B C 6 8 H

a, Xét tam giác ABC và tam giác HBA ta có : 

^ABC = ^HBA 

^BAC = ^BHA = 900

Vậy tam giác ABC ~ tam giác HBA ( g.g )

b, Xét tam giác HAB và tam giác HCA ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA ( phụ nhau )

Vậy tam giác HAB ~ tam giác HCA ( g.g )

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)

17 tháng 5 2021

c, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64\Rightarrow BC=10\)cm 

Vì tam giác ABC ~ tam giác HBA ( cma )

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)( tỉ lệ thức )

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=\frac{24}{5}\)cm 

2 tháng 6 2020

a) Xét △HBA và △ABC có

\(\widehat{AHB}=\widehat{BAC}=90^o\)

\(\widehat{B}\) là góc chung

⇒ ∆HBA ∾ ∆ABC (g-g)

18 tháng 3 2021

A B C H M I N

a, Xét tam giác AHM và tam giác ACH ta có : 

^H = ^HMA = 900

^A _ chung 

Vậy tam giác AHM ~ tam giác ACH ( g.g )

\(\Rightarrow\frac{AH}{AC}=\frac{AM}{AH}\)( tỉ số đồng dạng ) \(\Rightarrow AH^2=AM.AC\)

b, đề sai ko ?