Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì bạn tự vẽ nha
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
b)Xét tam giác AHB và tam giác HCA, có
Góc A - góc H
Góc ABH = Góc AHC
-->tam giác AHB ~ tam giác AHC
-->AH/HB = HC/AH
-->AH.AH = HB.HC
-->AH^2=HB.HC(đpcm)
c)
+) Áp dụng định lý PTG vào tam giác vuông ABC, có :
BC^2=AB^2 + AC^2
<--> 6^2 + 8^2 = 100
--> BC = 10(cm)
+)Vì tam giác ABC ~ Tam giác HBA :
AB/HB = BC/BA = AC/HA
-)AB/HB = BC/BA
= 6/HB =10/6
--> HB = 6.6/10
-->HB = 3,6(cm)
-)BC/BA =AC/HA
=10/6 = 8/HA
--> HA = 6.8/10
--> HA = 4,8 (cm)
d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên
là đc tỉ số đồng dạng ạ
xét tam giác ABC có BC2=ab2 + ac2
thay số BC2=62+82
BC2=36+64=100
BC=10(cm)
còn lại mình không bít,xin lỗi
A B C 6 8 H
a, Xét tam giác ABC và tam giác HBA ta có :
^ABC = ^HBA
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác HAB và tam giác HCA ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( phụ nhau )
Vậy tam giác HAB ~ tam giác HCA ( g.g )
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)
c, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64\Rightarrow BC=10\)cm
Vì tam giác ABC ~ tam giác HBA ( cma )
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)( tỉ lệ thức )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=\frac{24}{5}\)cm
a)
Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\RightarrowĐpcm\)
b)
Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)
Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 6^2+8^2=10cm
HA=6*8/10=4,8cm
a) Xét ΔABC và ΔHBA có
\(\widehat{ABC}\) chung
\(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)
Do đó: ΔABC∼ΔHBA(g-g)
b) Xét ΔHBA và ΔHAC có
\(\widehat{AHB}=\widehat{CHA}\left(=90^0\right)\)
\(\widehat{HBA}=\widehat{HAC}\)(cùng phụ với \(\widehat{ACB}\))
Do đó: ΔHBA∼ΔHAC(g-g)
⇒\(\frac{BH}{AH}=\frac{AH}{CH}\)
hay \(AH^2=HB\cdot HC\)(đpcm)
c) Xét ΔACD và ΔHCE có
\(\widehat{CAD}=\widehat{CHE}\left(=90^0\right)\)
\(\widehat{ACD}=\widehat{HCE}\)(CD là đường phân giác của ΔACB)
Do đó: ΔACD∼ΔHCE(g-g)
⇒\(\frac{S_{ACD}}{S_{HCE}}=\left(\frac{AC}{HC}\right)^2\)
hay \(\frac{S_{ACD}}{S_{HCE}}=\left(\frac{4}{HC}\right)^2\)(1)
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay \(BC=\sqrt{25}=5cm\)
Ta có: ΔABC∼ΔHBA(cmt)
mà ΔHBA∼ΔHAC(cmt)
nên ΔABC∼ΔHAC
⇒\(\frac{AC}{HC}=\frac{BC}{AC}\)
hay \(HC=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}=3,2cm\)(2)
Từ (1) và (2) suy ra \(\frac{S_{ACD}}{S_{HCE}}=\left(\frac{4}{3,2}\right)^2=\frac{25}{16}\)
Đa tạ (part 2)