Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đo: ΔCAD cân tại C
hay CA=CD
Xét ΔBAD có
BH là đườg cao
BH là đường trung tuyến
Do đo:ΔBAD cân tại B
Xét ΔCAB và ΔCDB có
CA=CD
AB=DB
CB chung
Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)
hay ΔBDC vuông tại D
c: Xét ΔDAE có
C là trung điểm của DE
H là trung điểm của DA
DO đó:CH là đường trung bình
=>CH//AE
hay AE//BC
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
giúp em khúc 2,3,4 với ạ; tất cả đều cùng 1 bài
1 thì em chưa học đến tam giác cân
Ta có hình vẽ:
A B C H D
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{AHB}\)=\(\widehat{DHB}\) = 900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\) (2 góc tương ứng)
=> BC là phân giác \(\widehat{ABD}\) (đpcm)
b/ Xét tam giác ACH và tam giác DCH có:
CH : cạnh chung
\(\widehat{AHC}\)=\(\widehat{DHC}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ACH = tam giác DCH (c.g.c)
=> CA = CD (2 cạnh tương ứng)
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
1: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có
CH chung
HA=HD
Do đó: ΔHAC=ΔHDC
Suy ra: CA=CD