K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

\(A=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge2\sqrt{\frac{3}{a}.\frac{3a}{4}}+2\sqrt{\frac{9}{2b}.\frac{b}{2}}+2\sqrt{\frac{4}{c}.\frac{c}{4}}+\frac{1}{4}.20\)

\(=3+3+2+5\)

\(=13\)

Dấu "=" xảy ra khi \(a=2;\text{ }b=3;\text{ }c=4\)

Vậy GTNN của A là 13.

15 tháng 11 2021

\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

4 tháng 7 2021

đặt 

\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

\(=>4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{36}{2b}+\dfrac{16}{c}\)

\(=>4A=a+2b+3c+3a+\dfrac{12}{a}+2b+\dfrac{36}{2b}+c+\dfrac{16}{c}\)

áp dụng BDT AM-GM

\(=>\dfrac{12}{a}+3a\ge2\sqrt{12.3}=12\)

\(=>2b+\dfrac{36}{2b}\ge2\sqrt{36}=12\)

\(=>c+\dfrac{16}{c}\ge2\sqrt{16}=8\)

\(=>4A\ge20+12+12+8=52=>A\ge13\)

dấu"=" xảy ra<=>a=2,b=3,c=4

4 tháng 7 2021

hihi Điên nhờ...

31 tháng 12 2016

\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)

\(\Rightarrow S\ge13\)

Đẳng thức xảy ra khi a = 2, b = 3, c = 4

Vậy minS = 13 tại (a,b,c) = (2,3,4)

31 tháng 12 2016

Ai giúp đi.

15 tháng 5 2022

GTNN=13 khi a=2, b=3, c=4

 

16 tháng 5 2022

Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.

29 tháng 10 2017

Áp dụng BĐT Cô-si

Ta có \(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\Rightarrow A\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\Rightarrow A\ge13\)

Dấu bằng xảy ra khi\(a=2;b=3;c=4\)

Vậy\(MinA=13\Leftrightarrow\left(a;b;c\right)=\left(2;3;4\right)\)