Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
a) vì a<b => 2a<a + b ; c < d => 2c < c + d ; m<n => 2m< m + n
=> 2a + 2c + 2m = 2 (a + c + m) < ( a + b + c + m + n)
=> \(\frac{a+c+m}{a+b+c+m+n}< \frac{1}{2}\left(đccm\right)\)
t i c k nha!! 4545654756678769780
Ta có:\(1\le a;2\le b;3\le c;4\le d;5\le m;6\le n\)
\(\Rightarrow\hept{\begin{cases}a+c+m\ge1+3+5=9\\a+b+c+m+n=1+2+3+5+6=17\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+m+n}\ge\frac{9}{17}>\frac{9}{18}=\frac{1}{2}\)
b,Tương tự
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
a < b => 2a < a + b ; c < d => 2c < c + d ; m < n => 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < a + b + c + d + m + n. Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
Câu 1: Tại đây có bài y chang bạn bấm vào sẽ thấy nhá!
Câu hỏi của trần nguyễn khánh nam - Toán lớp 7 | Học trực tuyến
Câu 2: Giải
- Số âm lớn nhất được viết bằng ba chữ số 1 là số đối của số dương bé nhất được viết bằng ba chữ số 1
- Số dương đó là \(\frac{1}{11}\)
Số đó là - \(\frac{1}{11}\)
Câu 5
Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
Đáp số : cam : 48 cây
xoài : 20 cây
chanh : 52 cây.
ai trên 10 điểm thì mình nha
Do a,b,c thuộc N nên \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
=>A=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
---
bạn có thể tự chứng minh bài toán phụ: với a<b thì \(\frac{a}{b}< \frac{a+m}{b+m}\) với a;b;m thuộc N
áp dụng vài bài toán: \(\frac{a}{b+c}< \frac{2a}{a+b+c};\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\)
=>A=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}\)=2(2)
Từ (1) và (2) =. 1<A<2