Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\)
\(=\frac{5bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{5ac}{\sqrt{5bc\left(3ba+2ca\right)}}+\frac{5ab}{\sqrt{5ca\left(3cb+2ab\right)}}\)
\(\ge\frac{10bc}{5ab+3ac+2bc}+\frac{10ac}{5bc+3ba+2ca}+\frac{10ab}{5ca+3cb+2ab}\)
Đặt \(ab=x,bc=y,ca=z\)(cho dễ nhìn)
\(=\frac{10x}{2x+3y+5z}+\frac{10y}{2y+3z+5x}+\frac{10z}{2z+3x+5y}\)
\(=\frac{10x^2}{2x^2+3yx+5zx}+\frac{10y^2}{2y^2+3zy+5xy}+\frac{10z^2}{2z^2+3xz+5yz}\)
\(\ge\frac{10\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}=\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\)
Giờ ta cần chứng minh
\(\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\ge3\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)
Vậy ta có ĐPCM
alibaba nguyễn bạn trả lời đúng đấy! Nhưng để dễ hiểu hơn ta nên áp dụng tổ hợp BĐT AM-GM và Cauchy-Schwarz nhé!
Áp dụng BĐT Svacxo ta có :
\(\frac{1}{a^3\left(7b+3c\right)}+\frac{1}{b^3\left(7c+3a\right)}+\frac{1}{c^3\left(7a+3b\right)}=\frac{\frac{1}{a^2}}{7ab+7ac}+\frac{\frac{1}{b^2}}{7bc+3ab}+\frac{\frac{1}{c^2}}{7ac+3bc}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{10\left(ab+bc+ca\right)}=\frac{1}{10}.\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{ab+bc+ca}=\frac{1}{10}.\left(ab+bc+ca\right)\)
\(=\frac{1}{10}.\frac{ab+bc+ca}{abc}=\frac{1}{10}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Lời giải:
BĐT cần chứng minh tương đương với:
\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)
Áp dụng BĐT AM-GM:
\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)
\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)
Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:
\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)
Áp dụng BĐT Cauchy_Schwarz và AM-GM:
\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)
\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)
Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.
Dấu "=" xảy ra khi $a=b=c$
\(\Leftrightarrow\frac{\sqrt{bc}}{\sqrt{5a\left(3a+2b\right)}}+\frac{\sqrt{ac}}{\sqrt{5b\left(3b+2c\right)}}+\frac{\sqrt{ab}}{\sqrt{5c\left(3c+2a\right)}}\ge\frac{3}{5}\)
\(\Leftrightarrow\frac{bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{ac}{\sqrt{5bc\left(3ab+2ac\right)}}+\frac{ab}{\sqrt{5ac\left(3bc+2ab\right)}}\ge\frac{3}{5}\)
Thật vậy, theo AM-GM ta có:
\(VT\ge\frac{2bc}{5ab+2bc+3ac}+\frac{2ac}{3ab+5bc+2ac}+\frac{2ab}{2ab+3bc+5ac}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\)
\(\Rightarrow VT\ge\frac{2x}{2x+3y+5z}+\frac{2y}{5x+2y+3z}+\frac{2z}{3x+5y+2z}=\frac{2x^2}{2x^2+3xy+5zx}+\frac{2y^2}{5xy+2y^2+3yz}+\frac{2z^2}{3zx+5yz+2z^2}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{5}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
\(\frac{1}{3a+2b+c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\) )cái này bn tự cm nha bằng hệ quả của bunhia
tương tự :\(\frac{1}{3b+2c+a}\le\frac{1}{36}\left(\frac{3}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
\(\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{3}{c}+\frac{2}{a}+\frac{1}{b}\right)\)
Công tất cả các vế vs nhau:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)=1/36 x96=8/3
à còn phần mik dùng bunhia sao ra dc thế nè :\(\frac{1}{3a+2b+c}=\frac{1}{a+a+a+b+b+c}\)
\(=\frac{1}{36}\left(\frac{36}{a+a+a+b+b+c}\right)\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
Áp dụng BĐT C-S dạng ENgel ta có:
$$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} \ge \frac{3}{3+abc} $$
$$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} \ge \frac{9}{4(a+b+c)} $$
Ta chứng minh $$ \frac{9}{4(a+b+c)} \ge \frac{3}{3+abc} $ hay $9+3abc \ge 4(a+b+c) $$
Đặt $ a= 1-x, b=1-y, c=1-z $ rồi xài AM-GM
đặt xong rồi khai triển rồi AM-GM phải không ạ?