Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
Thế vào bài toán trở thành
Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)
Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Từ (1) ta có
\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)
\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
Ta lại có
\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
\(\Rightarrow M=\frac{2013}{2}\)
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Áp dụng tính chất hãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a+b=2c;b+c=2a;a+c=2b\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=\frac{a}{c}=\frac{c}{b}=1\)
\(\Rightarrow B=2.2.2=8\)
ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a-a+a+b+b-b-c+c+c}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)
nếu a+b+c =0
=> a =0-b-c => a = -(b+c)
b = 0-a-c => b = -(a+c)
c = 0-a-b => c = -(a+b)
thay vào \(B=\left(1+\frac{-\left(a+c\right)}{a}\right).\left(1+\frac{-\left(b+c\right)}{c}\right).\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(\frac{a-\left(a+c\right)}{a}\right).\left(\frac{c-\left(b-c\right)}{c}\right).\left(\frac{b-\left(a+b\right)}{b}\right)\)
\(B=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}\)
\(B=-1\)
nếu a+b+c khác 0
mà \(\frac{a+b+c}{c+a+b}=\frac{a}{c}=\frac{b}{a}=\frac{c}{b}=1\Rightarrow a=b=c\)
=> \(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
\(B=\left(1+1\right).\left(1+1\right).\left(1+1\right)\)
\(B=2.2.2\)
\(B=8\)
KL: B= -1 hoặc B=8
Chúc bn học tốt !!!!
Ta có:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0
=> a+b-c=0 =>a+b=c
b+c-a=0 =>b+c=a
c+a-b=0 =>c+a=b
=>B=(a+b)/a.(c+a)/c.(b+c)/b
=c/a.b/c.a/b=1
TK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0
=> a+b-c=0 =>a+b=c
b+c-a=0 =>b+c=a
c+a-b=0 =>c+a=b
=>B=(a+b)/a.(c+a)/c.(b+c)/b
=c/a.b/c.a/b=1
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)
<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)