K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

\(\Leftrightarrow2\left(a^{2010}+b^{2010}+c^{2010}\right)=2\left(a^{1005}b^{1005}+b^{1005}c^{1005}+c^{1005}a^{1005}\right)\)

\(\Leftrightarrow2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2c^{1005}a^{1005}=0\)

\(\Leftrightarrow\left(a^{2010}-2a^{1005}b^{1005}+b^{2010}\right)+\left(b^{2010}-2b^{1005}c^{1005}+c^{2010}\right)+\left(c^{2010}-2c^{1005}a^{1005}+a^{2010}\right)=0\)

\(\Leftrightarrow\left(a^{1005}-b^{1005}\right)^2+\left(b^{1005}-c^{1005}\right)^2+\left(c^{1005}-a^{1005}\right)^2=0\)

\(\Rightarrow\left(a^{1005}-b^{1005}\right)^2=0;\left(b^{1005}-c^{1005}\right)^2=0;\left(c^{1005}-a^{1005}\right)^2=0\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\left(a-a\right)^{20}+\left(a-a\right)^{11}+\left(a-a\right)^{2010}=0\)

2 ( a trên 2010 + b trân 2010 + c trên 2010 ) = 2 ( a trên 1005 b trên 1005 + b trên 1005 c trên 1005 + c trên 1005 a trên 1005 )

2a^ ( 2010 ) + 2b^ ( 2010 ) + 2c^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) - 2b^ ( 1005 ) c^ ( 1005 ) - 2c^ ( 1005 )a^ ( 1005 ) = O\)

( a^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) + b^ ( 2010 ) + ( b^( 2010 ) - 2b^ ( 1005 ) c^ ( 1005 ) + c^ ( 2010 ) + ( c^ ( 2010 ) - 2c^ ( 1005 ) a^ ( 1005 ) + a^ ( 2010 ) = 0\)

( a^ ( 1005 ) ^2 + ( b^ ( 1005 ) - c^ ( 1005 ) ^2 + ( c^ ( 1005 ) - a^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)

( a^ ( 1005 ) - b^ ( 1005 ) ^ 2= 0 : ( b^ ( 1005 ) - c^ ( 1005 ) ^2 = 0 : ( c^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)

a = b = c

( a - a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a - a ) ^ (2010 = 0\)

Vậy :  ( a -a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a + a ) ^ ( 2010 = 0\)

\(a^{2010}+b^{2010}+c^{2010}=a^{1005}b^{1005}+b^{1005}c^{1005}+a^{1005}c^{1005}\)

=>\(2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2a^{1005}c^{1005=0}\)

=>\(\left(a^{1005}-b^{1005}\right)\left(b^{1005}-c^{1005}\right)\left(a^{1005}-c^{1005}\right)=0\)

=>a=b=c

\(A=\left(b-b\right)^{20}+\left(b-b\right)^{11}+\left(c-c\right)^{2010}=0\)

31 tháng 7 2016

Ta có x=9 => 10=x+1

Thay vào ta có:

\(Q\left(x\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}...-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...-x^2-x+x+1=1\)

31 tháng 7 2016

Toán lớp 8Hi!!!

18 tháng 7 2016

giúp e vs ạ

8 tháng 8 2016

Ta có:  a +b +c = 0:

=> (a + b + c)2 = 0 
=> a² + b² + c² + 2(ab + bc + ca) = 0 
=> a² + b² + c² = -2(ab + bc + ca)    (1

Mặt khác:

a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²)    (cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²)  ( do (1) ) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> ĐPCM.hihi