Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)
Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)
Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)
\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)
Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1
Tương tự ab+ac2=bc+ba3=ca+cb4=2bc5ab+ac2=bc+ba3=ca+cb4=2bc5
ab+ac2=ba+bc3=ca+cb4=2ac3ab+ac2=ba+bc3=ca+cb4=2ac3
Do đó 2ab1=2bc5⇒a1=c5⇒a3=c152ab1=2bc5⇒a1=c5⇒a3=c15
2bc5=2ac3⇒b5=a32bc5=2ac3⇒b5=a3
Do vậy a3=b5=c15
Bạn bảo bọn mình cm thế nào? Bạn phải đưa ra đẳng thức hoặc bất đẳng thức chứ!
Từ \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{c}{ca}+\dfrac{a}{ca}\)
\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}\\\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\\\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{b}+\dfrac{1}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\\\dfrac{1}{c}=\dfrac{1}{b}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Rightarrow a=b=c\)
Khi đó: \(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{1\cdot1+1\cdot1+1\cdot1}{1^2+1^2+1^2}=\dfrac{3}{3}=1\)
\(a+b+c=0\Rightarrow a+c=-b\)
\(ab+bc+ca=b\left(a+c\right)+ca=b.\left(-b\right)+ca=-b^2+ca\)
\(b^2\)luôn là số dương \(\Rightarrow-b^2\) luôn là số âm
mặt khác, ta có: \(a+c=-b\Rightarrow\) a và c không thể cùng dương
\(\Rightarrow ac\)chỉ có thể là số âm
Nên \(b\left(a+c\right)+ca\le0\)\(\Rightarrow ab+bc+ca\le0\) với \(a+b+c=0\) (đpcm)
tích mình đi, mình tích lại cho