K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

\(a+b+c=0\Rightarrow a+c=-b\)

\(ab+bc+ca=b\left(a+c\right)+ca=b.\left(-b\right)+ca=-b^2+ca\)

\(b^2\)luôn là số dương \(\Rightarrow-b^2\) luôn là số âm

mặt khác, ta có: \(a+c=-b\Rightarrow\) a và c không thể cùng dương

\(\Rightarrow ac\)chỉ có thể là số âm

Nên \(b\left(a+c\right)+ca\le0\)\(\Rightarrow ab+bc+ca\le0\) với \(a+b+c=0\) (đpcm)

tích mình đi, mình tích lại cho

9 tháng 3 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)

Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)

\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)

Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)

\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)

Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)(ca+cb)2+34=2ab1ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1

Tương tự ab+ac2=bc+ba3=ca+cb4=2bc5ab+ac2=bc+ba3=ca+cb4=2bc5

ab+ac2=ba+bc3=ca+cb4=2ac3ab+ac2=ba+bc3=ca+cb4=2ac3

Do đó 2ab1=2bc5a1=c5a3=c152ab1=2bc5⇒a1=c5⇒a3=c15

2bc5=2ac3b5=a32bc5=2ac3⇒b5=a3

Do vậy a3=b5=c15

6 tháng 1 2016

Bạn bảo bọn mình cm thế nào? Bạn phải đưa ra đẳng thức hoặc bất đẳng thức chứ!

 

24 tháng 3 2017

Từ \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{c}{ca}+\dfrac{a}{ca}\)

\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}\\\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\\\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{b}+\dfrac{1}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\\\dfrac{1}{c}=\dfrac{1}{b}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Rightarrow a=b=c\)

Khi đó: \(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{1\cdot1+1\cdot1+1\cdot1}{1^2+1^2+1^2}=\dfrac{3}{3}=1\)

25 tháng 3 2017

thank nha