Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\) a = bk ; c = dk
\(\Rightarrow\)\(\dfrac{4a^2+4c^2}{4b^2+4d^2}\)=\(\dfrac{4\left(bk\right)^2+4\left(dk\right)^2}{4b^2+4d^2}\)
=\(\dfrac{4b^2k^2+4d^2k^2}{4b^2+4d^2}\)=\(\dfrac{k^2\left(4b^2+4d^2\right)}{4b^2+4d^2}\)= k2 (1)
\(\Rightarrow\)\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)=\(\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}\)=\(\dfrac{[k\left(b-d\right)]^2}{\left(b-d\right)^2}\)
=\(\dfrac{k^2\left(b-d\right)^2}{\left(b-d\right)^2}\)= k2 (2)
Từ (1) và (2), suy ra:
\(\dfrac{4a^2+4c^2}{4b^2+4d^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (đpcm)
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
link đây tham khảo nhé:
https://hoc24.vn/hoi-dap/question/207558.html
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
help me!