Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4b^2c^2-\left(b^2+c^2-a^2\right)=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)=\left(a^2-\left(b-c\right)^2\right)\left(\left(b+c\right)^2-a^2\right)\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)(dpcm)
Vì a-b+c >0
a+b-c>0
b+c-a> 0
a+b+c>0
1. Phân tích đa thức thành nhân tử:
a) \(x^2-x-6\)
\(=x^2-3x+2x-6\)
\(=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
c) \(x^3-19x-30\)
\(=x^3+5x^2+6x-5x^2-25x-30\)
\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)
\(=\left(x^2+5x+6\right)\left(x-5\right)\)
\(=\left(x^2+2x+3x+6\right)\left(x-5\right)\)
\(=\left[x\left(x+2\right)+3\left(x+2\right)\right]\left(x-5\right)\)
\(=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
3. Phân tích thành nhân tử:
c) \(81x^4+4\)
\(=\left(9x^2\right)^2+2.9x^2.2+2^2-36x^2\)
\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)
d) \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right) \left(x^3-x^2+1\right)\)
tương tư d.violet.vn//uploads/resources/present/3/700/91/preview.swf