K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018
a>_5 b>_6 c>_7 =>2ab>_60 2ac>_70 2bc>84=> 2ab+2bc+2ac>_214 (1) lại có: a^2+b^2+c^2=125 (2) cong ve voi ve(1)va (2): (a+b+c)^2>_339 =>a+b+c>_căn339 =>min=căn339
16 tháng 5 2018

Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất

mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7

và a\(^2\)+b\(^2\)+c\(^2\)=125

\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)

GTNN của M là 19

16 tháng 5 2018

\(a\ge5;b\ge6;c\ge7\)

\(\Rightarrow a^2\ge25;b^2\ge36;c^2\ge49\)

\(\Leftrightarrow a^2+b^2+c^2\ge25+36+49=110\)

Vì \(a\ge5;b\ge6;c\ge7\Rightarrow a< b< c\)

Vì a=5;b=6;c=7 ko thỏa mãn nên ta xét

\(a=6;b=7;c=8\Rightarrow a^2+b^2+c^2=6^2+7^2+8^2=36+49+64=139\)

=> a=5;b=6;c=7(loiaj)

rồi bn xét a=5;b=5;c=6 

thông cảm cho em nhé vì em ms lớp 6 thôi 

7 tháng 4 2017

\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)

\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)

\(-ab+ac\le0\)

\(-ad-cd\le0\)

\(-bc+bd\le0\)

\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)

\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)

Bằng nhau khi và chỉ khi a = b = c = d

Dấu lớn xảy ra khi a> b >c > d

***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài limdim***********

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

21 tháng 3 2019

\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
 

4 tháng 6 2016

a)Sắp xếp:a\(\ge\) b\(\ge\) c\(\ge\) 0

a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)

=a(a-b)[(a-b)=(b-c)]-b(a-b)(b-c)=c(a-c)(b-c)

=a(a-b)2+a(a-b)(b-c)-b(a-b)(b-c)+c(a-c)(b-c)

=a(a-b)2+(b-c)(a-b)2+c(a-c)(b-c)\(\ge\) 0

8 tháng 5 2019

Em có cách này nhưng không biết đúng không.Anh check lại ạ,em mới lớp 7 thôi!

Bổ sung đk a,b,c >= 0 (hay a,b,c không âm)

Áp dụng BĐT Cô si (AM-GM),ta có:

\(a^2+\frac{1}{4}\ge2\sqrt{\frac{a^2.1}{4}}=a\) 

Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)

Cộng theo vế 3 BĐT trên suy ra \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 5 2019

Hoặc là dùng BĐT Bunhiacopxki chắc cũng được ạ!

Ta có: \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

Suy ra \(a^2+b^2+c^2\ge\frac{\left(\frac{9}{4}\right)}{3}=\frac{9}{12}=\frac{3}{4}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3