K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ML
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
14 tháng 5 2022
Lời giải:
$M=c^2(\frac{1}{a^2}+\frac{1}{b^2})+\frac{a^2+b^2}{c^2}+2017$
$\geq \frac{4c^2}{a^2+b^2}+\frac{a^2+b^2}{c^2}+2017$ (theo BĐT Cauchy-Schwarz)
$=\frac{3c^2}{a^2+b^2}+(\frac{c^2}{a^2+b^2}+\frac{a^2+b^2}{c^2})+2017$
$\geq \frac{3(a^2+b^2)}{a^2+b^2}+2\sqrt{\frac{c^2}{a^2+b^2}.\frac{a^2+b^2}{c^2}}+2017=3+2+2017=2022$ (theo BĐT AM-GM)
Vậy $M_{\min}=2022$
24 tháng 2 2016
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
Ta có
\(\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)\left(a^2+b^2+c^2\right)\ge\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)^2=\frac{9}{16}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
\(\Rightarrow M=4\left(a^2+b^2+c^2\right)\ge3\)
Đạt được khi: \(a=b=c=\frac{1}{2}\)
Ta có:
\(a^2+b^2\ge2ab\) (1)
\(b^2+c^2\ge2bc\) (2)
\(a^2+c^2\ge2ac\) (3)
Cộng từng vế (1);(2);(3)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)
\(\Leftrightarrow4\left(a^2+b^2+c^2\right)\ge3\)
Dấu "=" xãy ra<=>a=b=c=1/2
vậy MinM=3<=>a=b=c=1/2