K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 12 2020

a;b;c phải là số dương chứ bạn?

\(\dfrac{a+1}{b^2+1}=a+1-\dfrac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\dfrac{b^2\left(a+1\right)}{2b}=a+1-\dfrac{b+ab}{2}\)

Tương tự:

\(\dfrac{b+1}{c^2+1}\ge b+1-\dfrac{c+bc}{2}\) ; \(\dfrac{c+1}{a^2+1}\ge c+1-\dfrac{a+ca}{2}\)

Cộng vế với vế:

\(VT\ge a+b+c+3-\dfrac{1}{2}\left(a+b+c+ab+bc+ca\right)\)

\(VT\ge6-\dfrac{3}{2}-\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{9}{2}-\dfrac{1}{6}\left(a+b+c\right)^2=3=a+b+c\)

\(\Rightarrow VT\ge a+b+c\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

20 tháng 5 2018

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bđt Cauchy ta có :

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=3\)

NV
14 tháng 9 2021

\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)

\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)

\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)

11 tháng 12 2018

Áp dụng BĐT Cauchy - Schwarz dạng Engel:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{1}{2}\)

\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Không mất tổng quát giả sử \(c=\min (a,b,c)\)

Khi đó, do \(ab+bc+ac=3\Rightarrow ab\geq 1\).

Với $ab\geq 1$ ta có bổ đề sau: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

Để cm bổ đề trên rất đơn giản. Quy đồng và biến đổi tương đương thu được \((a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )

Sử dụng bổ đề vào bài toán:

\(\Rightarrow \text{VT}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+ab+3}{abc^2+ab+c^2+1}(*)\)

Giờ ta sẽ cm \(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}(**)\)

\(\Leftrightarrow 2(2c^2+ab+3)\geq 3(abc^2+ab+c^2+1)\)

\(\Leftrightarrow c^2+3\geq 3abc^2+ab\)

\(\Leftrightarrow c^2+bc+ac\geq 3abc^2\)

\(\Leftrightarrow c+b+a\geq 3abc\).

BĐT trên đúng do theo AM-GM: \(3(a+b+c)=(ab+bc+ac)(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\) )

Do đó $(*)$ được cm.

Từ \((*),(**)\Rightarrow \text{VT}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

3 tháng 12 2017

Có: \(\dfrac{a+1}{1+b^2}=\dfrac{\left(1+b^2\right).\left(a+1\right)-b^2\left(a+1\right)}{1+b^2}=a+1-\dfrac{b^2\left(a+1\right)}{1+b^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương 1 và b2 ta được

\(1+b^2\ge2b\Rightarrow-\dfrac{b^2\left(a+1\right)}{1+b^2}\ge-\dfrac{b^2\left(a+1\right)}{2b}=-\dfrac{ab+b}{2}\)

\(\Rightarrow\dfrac{a+1}{1+b^2}\ge a+1-\dfrac{ab+b}{2}\)

CMTT\(\Rightarrow\dfrac{b+1}{1+c^2}\ge b+1-\dfrac{bc+c}{2};\dfrac{c+1}{1+a^2}\ge c+1-\dfrac{ac+a}{2}\)

\(\Rightarrow A\ge\left(a+b+c\right)+3-\dfrac{\left(ab+bc+ac\right)+\left(a+b+c\right)}{2}\)

Ta có \(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow ab+ac+bc\le\dfrac{1}{3}.3^2=3\)

\(\Rightarrow A\ge3+3-\dfrac{3+3}{2}=3\)(đpcm)

9 tháng 12 2018

Chả biết đúng hay sai,làm đại.:v

Dự đoán dấu "=" xảy ra tại a = b = c = 1

Với dự đoán đó,

Xét \(\dfrac{a+1}{1+b^2}=2-\dfrac{a+1}{1+b^2}\ge2-\dfrac{a+1}{2b}\)

Tương tự: \(\dfrac{b+1}{1+c^2}\ge2-\dfrac{b+1}{2c};\dfrac{c+1}{1+a^2}\ge2-\dfrac{c+1}{2a}\)

Cộng theo vế 3BĐT,ta có: \(VT\ge2+2+2-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)

\(=6-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)

\(\ge6-\dfrac{2b}{2b}+\dfrac{2c}{2c}+\dfrac{2a}{2a}=3^{\left(đpcm\right)}\) (do dự đoán a = b = c = 1 nên \(a+1\le2b\))

Vậy điều ta dự đoán là đúng.

Dấu "=" xảy ra khi a=b=c=1

4 tháng 6 2018

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*