K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

25 tháng 2 2019

\(ab+2bc+3ac\)

\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2c^2\le0\)

21 tháng 3 2020

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

18 tháng 3 2018

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

hok tôts

27 tháng 3 2016

vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0

21 tháng 3 2017

Giải:

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}b+c=-a\\a+b=-c\end{matrix}\right.\)

\(\Rightarrow ab+2bc+3ca\)

\(=ab+ca+2bc+2ca\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=a\left(-a\right)+2c\left(-c\right)\)

\(=-a^2-2c^2\le0\)

Vậy \(ab+2bc+3ca\le0\) (Đpcm)

21 tháng 3 2017

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

23 tháng 12 2015

Đề : ab + 4bc + ca \(\le\)

Có : a + b + c = 0 => a = - b - c

Thay vào ab + 4bc + ca \(\le\)0 ta đc:

(-b - c).b + 4bc + c.(-b - c) \(\le\) 0

=> -b2 - bc + 4bc - bc - c2 \(\le\)0

=> -b2 - c2 + 2bc \(\le\)0

=> - (b2 - 2bc + c2\(\le\) 0

=> -(b - c)2 \(\le\) 0 (luôn đúng)

Vậy ab + 4bc + ca  \(\le\) 0

1 tháng 3 2017

abc bằng 0

24 tháng 1 2019

bình phương pt a+b+c=0 lên ta đc a^2+b^2+c^2+...=0

mà a^2+b^2+c^2>=0

suy ra 2(ab+ac+bc) bé hơn hoặc bằng 0

hay ab+ac+bc bé hơn hoặc bằng 0

24 tháng 1 2019

cám ơn tui giải đc roi đăng lên cho có không khí thôi