K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

Đề : ab + 4bc + ca \(\le\)

Có : a + b + c = 0 => a = - b - c

Thay vào ab + 4bc + ca \(\le\)0 ta đc:

(-b - c).b + 4bc + c.(-b - c) \(\le\) 0

=> -b2 - bc + 4bc - bc - c2 \(\le\)0

=> -b2 - c2 + 2bc \(\le\)0

=> - (b2 - 2bc + c2\(\le\) 0

=> -(b - c)2 \(\le\) 0 (luôn đúng)

Vậy ab + 4bc + ca  \(\le\) 0

1 tháng 3 2017

abc bằng 0

22 tháng 4 2019

b 1 là b + 1, c 2 là c + 2, a b c là a + b + c  nhé

22 tháng 4 2019

bạn viết lại đề bại giùm đc ko 

\(0\le a\le b;1\le c...abc=1\)Số 2 là gì vậy

13 tháng 11 2019

Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

Mà  \(a^2+b^2+c^2\ge0\)nên \(2\left(ab+bc+ac\right)\le0\)

\(\Rightarrow ab+bc+ac\le0\left(đpcm\right)\)

21 tháng 3 2020

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

15 tháng 6 2016

a) do a/b>c/d (b>0,d>0)

=> ad>bc => ad+ab>bc+ab

a.(d+b)>b(c+a)   => a/b=c+a/b+d (1)

tương tự cộng với cd là xong

b) 1/3<15/48,14/48,13/68<1/4

ghi đề lại nha bạn. Không hiểu đề thì ai mà giúp bạn giải đươc

CẢM ƠN

7 tháng 11 2015

a) A=x(x-2) 

Để A>0

TH1:  x>0 và x-2 < 0 ==> 0<x<2

TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;

Vậy : Để A< 0 thì 0<x<2

Để A lớn hơn hoặc bằng 0 thì :

TH1: x >=0 và x-2>=0 ===> x>=2

TH2 : x<=0 và x-2<=2 ===> x<=2

như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2