K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(a+b+c=0\)

\(\left(a+b+c\right)^2=0\)

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(2018+2\left(ab+bc+ca\right)=0\)

\(ab+bc+ca=-1009\)

\(\left(ab+bc+ca\right)^2=\left(-1009\right)^2=1009^2\)

\(a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=1009^2\)

\(a^2b^2+b^2c^2+c^2a^2+2abc\left(b+c+a\right)=1009^2\)

\(a^2b^2+b^2c^2+c^2a^2=1009^2\)

\(a^2+b^2+c^2=2018\)

\(\left(a^2+b^2+c^2\right)^2=2018^2\)

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2018^2\)

\(a^4+b^4+c^4+2\cdot1009^2=2018^2\)

\(a^4+b^4+c^4=2018^2-2\cdot1009^2=2036162\)

18 tháng 1 2018

(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)

suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2

Mà a+b+c= 0(gt)

suy ra: 0^2 x 2=0^4 x 2

0 = 0

=)))

2 tháng 9 2016
A = 2032128
15 tháng 5 2018

A = 2032128

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

5 tháng 1 2018

\(a+b+c=0\\ \Rightarrow\left(a+b+c\right)^2=0\\ \Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Rightarrow2009+2\left(ab+bc+ac\right)=0\\ \Rightarrow ab+bc+ca=-\dfrac{2009}{2}\\ \Rightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{2009}{2}\right)^2=S\)

S tự tính

\(\left(a^2+b^2+c^2\right)^2=2009^2\\ \Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2009^2\\ \Rightarrow a^4+b^4+c^4=2009^2-\dfrac{2009^2}{2}\)