Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)
=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)
=>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)
=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ac-ad=ac-cd\)
\(\Rightarrow a\left(c-d\right)=c\left(a-d\right)\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)
bạn dùng phương pháp suy ngươc nha . mình thử bạn xem bạn có làm được ko.
mình suy từ kết quả lên đề bài cho nha
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{c+d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow bd-ad=bd-bc\)
\(\Rightarrow d\left(b-a\right)=b\left(d-c\right)\)
\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\left(đpcm\right)\)
Do a/b = c/d
=> 1 - a/b = 1 - c/d
=> b/b - a/b = d/d - c/d
=> b - a/b = d - c/d
Từ đề bài ta sẽ có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{a+b+c}{6036}.\)
Suy ra a + b + c = 6036 : 3 = 2012
Ta có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{2012}{6036}.\)
tới đây thì mình bí rồi! Bạn tự giải nhé! Ai thấy đúng nhớ tk cho mình
như thế vậy thì tớ cg nghĩ ra rồi, dù sao thì cg cảm ơn bạn đã trả lời câu hỏi của mk
a, Áp dụng bđt cosi ta có :
a/b + b/a >= \(2\sqrt{\frac{a}{b}.\frac{b}{a}}\)= 2
b, Tương tự câu (a) ta có : b/c + c/b >= 2 ; c/a + a/c >= 2
=> S - a/c + b/c + b/a + c/a + c/b + a/b = (a/b + b/a) + (b/c + c/b) + (c/a + a/c) >= 2+2+2 = 6
Tk mk nha