K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

nhầm lẫn 1 số chỗ nên giờ mới ra,mong bn thông cảm

ta có:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)

đặt \(P=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)

áp dụng bunhia ta có:

\(P\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2=1\)

\(\Rightarrow P\ge\frac{1}{a+b+c}\)

27 tháng 12 2015

\(1.\sqrt{a^2+ab+b^2}\le\frac{1+a^2+ab+b^2}{2}\)

\(\Rightarrow VT\ge\frac{1}{\frac{1+a^2+ab+b^2}{2}}+\)\(\frac{1}{\frac{1+b^2+cb+c^2}{2}}+\)\(\frac{1}{\frac{1+c^2+ac+a^2}{2}}\)\(\ge\frac{\left(1+1+1\right)^2}{\frac{1+a^2+ab+b^2}{2}+\frac{1+b^2+bc+c^2}{2}+\frac{1+c^2+ca+a^2}{2}}=\frac{9}{a^2+b^2+c^2+\frac{\left(ab+bc+ca\right)+3}{2}}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=VP\)

vì   3 </ 3 ( ab+bc+ca)

22 tháng 1 2018

dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)

áp dụng cô si ta có

\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)

ÁP DỤNG co si tiếp tao có  \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)

theo cô si ta có  \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)

\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)

từ 1 và 2 ta được

\(6\ge2+4\)

bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD

22 tháng 1 2018

bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành   \(\frac{9}{a+b+c}\ge2+4\) nhé  

10 tháng 10 2017

\(VT=\frac{c+ab}{a+b}+\frac{b+ac}{a+c}+\frac{a+bc}{b+c}\)

\(=\frac{c\left(a+b+c\right)+ab}{a+b}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{a\left(a+b+c\right)+bc}{b+c}\)

\(=\frac{ac+bc+c^2+ab}{a+b}+\frac{ab+b^2+cb+ac}{a+c}+\frac{a^2+ab+ac+bc}{b+c}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{a+b}+\frac{\left(b+c\right)\left(a+b\right)}{a+c}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Hình như là \(\ge2\) mới đúng bạn ạ :v

11 tháng 10 2017

lm như thế nào nx ạk

17 tháng 5 2017

Chắc chắn là \(a^2+b^2+c^2=3\) rồi, thử \(a=b=c=\frac{1}{\sqrt{3}}\) là rõ

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\)

Ta có BĐT cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}\)

\(\Rightarrow VT\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}=\frac{9}{6}=\frac{3}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c=1\)

17 tháng 5 2017

\(a^2+b^2+c^2=1\) hay \(a^2+b^2+c^2=3\)

NV
22 tháng 2 2020

5.

ĐKXĐ: \(0\le x\le1\)

\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)

\(P\ge\sqrt{1-x+x}+\sqrt{1+x+x}=1+\sqrt{1+2x}\ge2\)

\(\Rightarrow P_{min}=2\) khi \(x=0\)

6.

\(3=a^2+b^2+ab\ge2ab+ab=3ab\Rightarrow ab\le1\)

\(3=a^2+b^2+ab\ge-2ab+ab=-ab\Rightarrow ab\ge-3\)

\(\Rightarrow-3\le ab\le1\)

\(a^2+b^2+ab=3\Rightarrow a^2+b^2=3-ab\)

Ta có:

\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab\)

\(P=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)

Đặt \(ab=x\Rightarrow-3\le x\le1\)

\(P=-x^2-7x+9=21-\left(x+3\right)\left(x+4\right)\le21\)

\(\Rightarrow P_{max}=21\) khi \(x=-3\) hay \(\left(a;b\right)=\left(-\sqrt{3};\sqrt{3}\right)\) và hoán vị

\(P=-x^2-7x+9=1+\left(1-x\right)\left(x+8\right)\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=1\) hay \(a=b=1\)

NV
22 tháng 2 2020

1. \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)

\(\Leftrightarrow x+y+z+\frac{1}{3}\left(x+y+z\right)^2\ge6\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Leftrightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Leftrightarrow x+y+z\ge3\)

Vậy \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge\frac{1}{3}.3^2=3\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

2. Áp dụng BĐT Bunhiacopxki:

\(Q^2\le3\left(2a+bc+2b+ac+2c+ab\right)\)

\(Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)

\(Q^2\le6\left(a+b+c\right)+\left(a+b+c\right)^2=16\)

\(\Rightarrow Q\le4\Rightarrow Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)

23 tháng 8 2020

Theo giả thiết, ta có: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1\)\(\Leftrightarrow1-\frac{1}{a+b+1}+1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}\le2\)\(\Leftrightarrow\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\le2\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{\left(a+b+b+c+c+a\right)^2}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)}\)

Từ đó suy ra \(\frac{\left(a+b+b+c+c+a\right)^2}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)}\le2\)               \(\Leftrightarrow\left(a+b+b+c+c+a\right)^2\)                     \(\le2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)\right]\)

\(\Leftrightarrow a+b+c\ge ab+bc+ca\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

27 tháng 9 2020

Vi : Ta có sơ đồ : Kiệt: 20 quả