Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+b+c\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}\left(\cdot\right)}\)
\(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
\(=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\left(do\cdot\right)\)
\(=-1.-1.-1\)
\(=-1\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)\(=\frac{c+a-b}{b}\)
=> \(\frac{a+b}{c}-1=\frac{b+c}{a}-1\)\(=\frac{c+a}{b}-1\)
=>\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Xét 2 trường hợp
+) Nếu a+b+c \(\ne\)0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(vì a+b+c \(\ne\)0)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c +a=2b\end{cases}}=>a=b=c\)\(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)=> \(a=b=c\)
Thay vào B => B=\(\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\)=2.2.2= 8
+) Nếu a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)Thay vào B
B=\(\left(1+\frac{-\left(a+c\right)}{a}\right)\)\(\left(1+\frac{-\left(b+c\right)}{c}\right)\)\(\left(1+\frac{-\left(a+b\right)}{b}\right)\)
=>B= \(\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)( Vì a,b,c \(\ne\)0 nên abc\(\ne\)0)
Vậy B= 8 nếu a+b+c khác 0 ; B=-1 nếu a+b+c =0
Xin lỗi bạn mk thiếu ở trường hợp 1
=>\(\hept{\begin{cases}a+b=2c\\c+b=2a\\a+c=2b\end{cases}}\)=>\(a=b=c\)
\(\frac{a+b+c+d}{a+b-c+d}=\frac{a-b+c+d}{a-b-c+d}=\frac{\left(a+b+c+d\right)-\left(a-b+c+d\right)}{\left(a+b-c+d\right)-\left(a-b-c+d\right)}=\frac{2b}{2b}=1.\)
\(\Rightarrow a+b+c+d=a+b-c+d\)
\(\Rightarrow2c=0\Rightarrow c=0\)
Lời giải:
Nếu $a+b+c+d=0$ thì $a+b+c=-d$
Khi đó: $P=\frac{-d}{d}=-1$
Nếu $a+b+c+d\neq 0$ thì áp dụng tính chất dãy tỉ số bằng nhau thì:
$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1$
$\Rightarrow a=b=c=d$
$\Rightarrow P=\frac{d+d+d}{d}=\frac{3d}{d}=3$
Câu 1:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)
\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)
Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Câu 2:
Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)
Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào P ta được:
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Vậy P = -3
Câu 3:
Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 => a + b = -(c + d)
b + c = -(d + a)
c + d = -(a + b)
d + a = -(b + c)
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4