Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp
Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).
a) cm: A,B,O,C cùng thuộc một đường tròn.
b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.
c) cm: BC trùng với tia phân giác của góc DHE.
d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.
Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.
a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.
b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.
c) cm: BC là tia phân giác của góc ABH.
d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔDCB vuông tại D
=>CD\(\perp\)DB tại D và \(\widehat{CDB}=90^0\)
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>\(\widehat{BEC}=90^0\)
ΔBEC vuông tại E
=>BE\(\perp\)EB tại E
=>BE\(\perp\)AC tại E
b:
Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>A,D,H,E cùng thuộc đường tròn đường kính AH
=>I là trung điểm của AH
c: Xét ΔABC có
BE,CD là đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại K
Xét ΔHAC có
I,M lần lượt là trung điểm của HA,HC
=>IM là đường trung bình của ΔHAC
=>IM//AC
Xét ΔBHC có
M,O lần lượt là trung điểm của CH,CB
=>MO là đường trung bình của ΔBHC
=>OM//BH
OM//BH
BH\(\perp\)AC
Do đó: OM\(\perp\)AC
IM//AC
OM\(\perp\)AC
Do đó: IM\(\perp\)OM
d: ID=IH
=>ΔDIH cân tại I
=>\(\widehat{IDH}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{KHC}\)(hai góc đối đỉnh)
và \(\widehat{KHC}=\widehat{CBD}\left(=90^0-\widehat{DCB}\right)\)
nên \(\widehat{IDH}=\widehat{CBD}\)
OD=OC
=>ΔODC cân tại O
=>\(\widehat{ODC}=\widehat{OCD}\)
=>\(\widehat{HDK}=\widehat{DCB}\)
\(\widehat{IDK}=\widehat{IDH}+\widehat{KDH}\)
\(=\widehat{DBC}+\widehat{DCB}=90^0\)
=>ID là tiếp tuyến của (O)(1)
Xét ΔIDO và ΔIEO có
ID=IE
DO=EO
IO chung
Do đó: ΔIDO=ΔIEO
=>\(\widehat{IDO}=\widehat{IEO}=90^0\)
=>IE là tiếp tuyến của (O)(2)
Từ (1),(2) suy ra các tiếp tuyến tại D và E của (O) cắt nhau tại I(ĐPCM)