Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABH có: góc ABH=90 độ,vuông góc với AB
Suy ra: AM.AB=AH^2(Đ/L)
CMTT tam giác AHC: AN.AC=AH^2(Đ/L)
cả hai diều suy ra:AM.AB=AN.AC
A B C H N M
hình không đẹp lắm, mong cậu thông cảm.
Có : AH là đường cao của tam giác ABC=> goc AHB =900
Tam giác AHB vuông tại H có AM là đường cao
=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong
Tam giac AHC vuong tai H có AN là đường cao
=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong
Nen AM.AB =AN.AC
b,Tam giác AHB vuông tại H,=> cot B = BH/AH
Tam giác AHC vuông tại H => cotC = CH/AH
Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)
Lời giải:
a)
Xét tam giác $MAH$ và $HAB$ có:
\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)
Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)
Hoàn toàn tương tự:
\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)
\(\Rightarrow AN.AC=AM.AB\) (đpcm)
b)
Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:
\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)
Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)
\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)
Áp dụng công thức trên vào bài toán:
\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)
\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)
\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)
Ta có:
\(\Delta AIK\sim\Delta ABC\left(g.g\right)\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\left(\frac{AI}{AB}\right)^2=c\text{os}^2A\).
Tương tự: \(\frac{S_{BHK}}{S_{ABC}}=c\text{os}^2B;\frac{S_{CIH}}{S_{ABC}}=c\text{os}^2C\).
Do đó: \(\frac{S_{HIK}}{S_{ABC}}=1-c\text{os}^2A-c\text{os}^2B-c\text{os}^2C\Rightarrow...\Rightarrow\text{đ}pcm\)