Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên nửa mặt phẳng bờ ME chứa S, vẽ tiếp tuyến Ex của đường tròn ngoại tiếp ΔMEF
=>góc SFE=góc MEx
=>góc MES=góc MEx
=>SE trùg với Sx
=>SE là tiếp tuyến của đường tròn ngoại tiếp ΔMEF
góc DMF=90 độ
=>DM vuông góc SF
ΔSAO vuông tạiA có AH là đường cao
nên SA^2=SH*SO=SM*SF
=>SM*SF=SN*SI
=>SM/SI=SN/SF
mà góc ESF chung
nên ΔSMN đồng dạng với ΔSIF
=>góc SIF=90 độ
=>M,N,D thẳng hàng
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Do SA là tiếp tuyến tại A của đường tròn (O) nên \(\widehat{SAO}=90^o\)
Do I là trung điểm của dây cung BC nên theo tính chất đường kính dây cung ta có \(OI\perp BC\Rightarrow\widehat{SIO}=90^o\)
Xét tứ giác SAOI có \(\widehat{SAO}+\widehat{SIO}=180^o\) mà A và I là hai đỉnh đối nhau nên SAOI là tứ giác nội tiếp đường tròn đường kính SO.
Xét tam giác cân OBC có OI là đường trung tuyến nên đồng thời là đường phân giác. Suy ra \(\widehat{BOD}=\widehat{COD}\Rightarrow sđ\stackrel\frown{BD}=sđ\stackrel\frown{DC}\)
Xét đường tròn (O) có \(sđ\stackrel\frown{BD}=sđ\stackrel\frown{DC}\Rightarrow\widehat{BAD}=\widehat{DAC}\) (Hai góc nội tiếp chắn các cung có số đo bằng nhau)
Suy ra AD là phân giác góc BAC.
b) Xét đường tròn (O) có:
\(\widehat{SEA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{DC}\right)\) (Góc có đỉnh nằm trong đường tròn)
\(=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{BD}\right)=\dfrac{1}{2}sđ\stackrel\frown{AD}\)
Lại có \(\widehat{SAE}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc tạo bởi tiếp tuyến dây cung)
\(\Rightarrow\widehat{SEA}=\widehat{SAE}\) hay tam giác SAE cân tại S.
Suy ra SA = SE (1)
Xét tam giác SBA và tam giác SAC có:
Góc S chung
\(\widehat{SAB}=\widehat{SCA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung AB)
\(\Rightarrow\Delta SBA\sim\Delta SAC\left(g-g\right)\)
\(\Rightarrow\dfrac{SB}{SA}=\dfrac{SA}{SC}\Rightarrow SA^2=SB.SC\) (2)
Từ (1) và (2) suy ra \(SE^2=SB.SC\)
c) Xét tam giác SAM và tam giác SFA có:
Góc S chung
\(\widehat{SAM}=\widehat{SFA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung AM)
\(\Rightarrow\Delta SAM\sim\Delta SFA\left(g-g\right)\)
\(\Rightarrow\dfrac{SA}{SF}=\dfrac{SM}{SA}\Rightarrow SA^2=SM.SF\)
\(\Rightarrow SM.SF=SE^2\Rightarrow\dfrac{SM}{SE}=\dfrac{SE}{SF}\)
Xét tam giác SME và tam giác SEF có:
Góc S chung
\(\dfrac{SM}{SE}=\dfrac{SE}{SF}\)
\(\Rightarrow\Delta SME\sim\Delta SEF\left(c-g-c\right)\)
\(\Rightarrow\widehat{MES}=\widehat{EFM}=\dfrac{1}{2}sđ\stackrel\frown{ME}\)
Suy ra SE là tiếp tuyến của đường tròn ngoại tiếp tam giác EFM.
d) Câu d có lẽ em gõ nhầm một chút: Kẻ AH vuông góc SO tại H.
Em xem lại đề rồi báo lại cô nhé. Nếu sửa đề như cô nói thì ta sẽ chứng minh FN vuông góc SD.
Sau đó xét tam giác SFD có SI và FN là các đường cao nên N là trực tâm của tam giác
Vậy thì N thuộc đường cao DM hay M, N, D thẳng hàng.
Ôi cái hình =))))