Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b= (1+1/6) + (1/2+1/5) + (1/3+1/4)
a/b= 7/6 + 7/10 + 7/12
a/b= 7(1/6+1/10+1/12)
Vì 6x10x12 khong la boi so cua 7 => a/b chia het cho 7 <=> a chia het cho 7 (dpcm)
Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)
Vậy giá trị của biểu thức đó là 3.
Nối 1 điểm với 6 điểm còn lại, ta được 6 đường thẳng
Có 7 điểm như vậy nên có số đường thẳng là:
7 . 6 = 42 ( đường thẳng )
Mà mỗi đường thẳng lặp lại 2 lần
Ta vẽ được số đưởng thẳng trong 7 điểm đã cho là:
42 : 2 = 21 ( đường thẳng )
Đ/S: 21 đường thẳng
Bài này bạn ko cần vẽ hình đâu.
Vì trong 7 điểm ko có 3 điểm nào thẳng hàng nên từ 1 điểm nối với 6 điểm còn lại tạo thành 1 đường thẳng
Vậy vẽ được số đường thẳng là : 7x6 =42(đường thẳng)
Mà mỗi đường thẳng đã được tính 2 lần nên ta vẽ được số đường thẳng từ 7 điểm đã cho là:
42:2=21 (đường thẳng)
\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)
\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)
Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)
\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)
\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)
\(\Rightarrow A< 3\)
Giải thích thêm: ta thấy \(\frac{1}{2^2}>\frac{1}{100}\),...,\(\frac{1}{10^2}=\frac{1}{100}\)=> từ \(\frac{1}{2^2}\)đến \(\frac{1}{10^2}\)có 5 cặp
\(\frac{1}{12^2}< \frac{1}{100}\),...,\(\frac{1}{100^2}< \frac{1}{100}\)=> từ \(\frac{1}{12^2}\)đến \(\frac{1}{100^2}\)có 45 cặp
=> 45>5 => tổng < 1/2 (kết hợp với cái kia nx thì bn mới hiểu)
\(x = {{18.123+9.4567.2+3.5310.6} \over 1+4+7+10+...+55+58-409}\)
\(A = {9.246+9.9134+9.10620{} \over [(58-1):3+1].(58+1):2-409}\)
\(A = {9.(246+9134+10620){} \over 590-490}\)
\(x = {20000{} \over 100}=200\)
x mk ghi nhầm nha A mới đúng nha
chúc bạn học tốt nha
Ta có:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
\(\Rightarrow A=\frac{50}{51}:2=\frac{25}{51}\)
Ta có: \(1=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
Vì a,b,c là số nguyên dương nên:
Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
đpcm
Cảm ơn bạn rất nhiều!