Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM dạng ngược ta dễ có:
\(\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{2}{a+b+b+c}=\frac{2}{\left(a+2b+c\right)}\)
Tương tự:
\(\frac{1}{\sqrt{\left(b+c\right)\left(c+a\right)}}\ge\frac{2}{\left(b+2c+a\right)}\frac{1}{\sqrt{\left(c+a\right)\left(a+b\right)}}\ge\frac{2}{2\left(c+2a+b\right)}\)
Khi đó:
\(P\ge2\left(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\right)\)
\(\ge\frac{9}{2\left(a+b+c\right)}=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c=2
Gáy cach nua.
Chứng minh: \(\Sigma\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)}\)
Theo Holder, cần c.m
\(\frac{3^3}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(c+a\right)+\left(c+a\right)\left(a+b\right)}\ge\frac{81}{4\left(a+b+c\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Done
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
1:|3x-1|-x=2
|3x-1| =2+x
=> 3x-1=2+x hay 3x-1=-2-x
3x-x=2+1 hay 3x+x=-2+1
2x=3 hay 4x=-1
x=3/2 hay x=-1/4
Vậy x=3/2; x=-1/4
2
a 4\(\sqrt{x}=8\)
=>\(\sqrt{x}=2\\ =>x=4\)
b
\(2\sqrt{x}>3\\ \sqrt{x}>\dfrac{3}{2}\\ x>\dfrac{9}{4}\)
c,\(4\sqrt{x}< 13\\ \sqrt{x}< \dfrac{13}{4}\\ x< \dfrac{1703}{16}\)
\(M\le\frac{a}{\sqrt{2a}}+\frac{b}{\sqrt{2b}}+\frac{c}{\sqrt{2c}}=\frac{1}{\sqrt{2}}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(M\le\frac{1}{\sqrt{2}}\sqrt{3\left(a+b+c\right)}\le\frac{3}{\sqrt{2}}\)
\(\Rightarrow M_{max}=\frac{3\sqrt{2}}{2}\) khi \(a=b=c=1\)