K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

P=1/(2a+b+c)^2+1/(a+2b+c)^2+1/(a+b+2c) đây là đề đúng nha khi nãy viết sai

21 tháng 6 2017

\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\)

\(=\frac{a^4}{ab+2ca}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=\frac{1}{3}\)

23 tháng 10 2017

Ta có:

\(\left(1-a^2\right)\left(1-b\right)>0\)

\(\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\left(1\right)\)

(Vì \(0< a,b< 1\))

Tương tự ta có: 

\(\hept{\begin{cases}1+b^2c>b^3+c^3\left(2\right)\\a+c^2a>c^3+a^3\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(2\left(a^3+b^3+c^3\right)< 3+a^2b+b^2c+c^2a\)

22 tháng 10 2020

Ta có: \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)

Tương tự: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)};\)\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{c}{abc+bc+c}+\frac{1}{bc+c+1}+\frac{bc}{abc^2+abc+bc}\right)\)

\(=\frac{1}{2}\left(\frac{c}{bc+c+1}+\frac{1}{bc+c+1}+\frac{bc}{bc+c+1}\right)=\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

21 tháng 7 2015

Đánh càng ít càng tốt. Kết quả cho "a/a^2+2b+3"

https://vn.answers.yahoo.com/question/index?qid=20130108011703AAV4ogs

Cho 3 số dương a,b,c và a^2+b^2+c^2=3. cmr? | Yahoo Hỏi & Đáp