Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 2a + b + c = 0 <=> a + a + b + c = 0 <=> a + c = -(a + b)
Ta có: VT = 2a3 + b3 + c3 = (a3 + b3) + (a3 + c3)
= (a + b)(a2 - ab + b2) + (a + c)(a2 - ac + c2)
= (a + b)(a2 + 2ab + b2) - 3ab(a + b) + (a + c)(a2 + 2ac + c2) - 3ac(a + c)
= (a + b)3 - 3ab(a + b) + (a + c)3 - 3ac(a + c)
= (a + b)3 - (a + b)3 - 3ab(a + b) + 3ac(a + b)
= -3a(a + b)(b - c) = 3a(a + b)(c - b) = VP
=> VT = VP => đpcm
cái này bạn dùng bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\)2 lần với từng phân thức. rồi cộng vế theo vế là xong
Cân bằng hệ số:
Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)
\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)
\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)
Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)
Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:
\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)
Dấu "=" xảy ra khi a = b =c = 1
Với mọi x, y > 0 ta luôn có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Đẳng thức xảy ra \(\Leftrightarrow\) x = y
Ta có: \(\frac{2}{2a+b+c}=\frac{1}{2}.\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(=\frac{1}{8}\left(\frac{4}{a+b}+\frac{4}{a+c}\right)\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}\right)=\frac{1}{8}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (1)
Tương tự \(\frac{2}{2b+c+a}\le\frac{1}{8}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) (2) và \(\frac{2}{2c+a+b}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\) (3)
Cộng (1), (2) và (3) ta được: \(A\le\frac{1}{8}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(A_{max}=\frac{3}{2}\) \(\Leftrightarrow\) \(a=b=c=1\)
Đề bài sai
Phản ví dụ: \(a=\dfrac{1}{2};b=2;c=4\) vì VT<VP
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}=\dfrac{a^2b^2}{\left(a^2+b^2\right)+\left(a^2+a^2b^2\right)+2a^2b^2}\le\dfrac{a^2b^2}{2ab+2a^2b+2a^2b^2}=\dfrac{ab}{2\left(1+a+ab\right)}\)
Tương tự và cộng lại;
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{bc}{1+b+bc}+\dfrac{ca}{1+c+ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{abc}{a+ab+abc}+\dfrac{ab.ca}{ab+abc+ab.ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{1}{a+ab+1}+\dfrac{a}{ab+1+a}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)