K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Biến đổi như sau $$\dfrac{bc}{6}+\dfrac{ac}{3}+\dfrac{ab}{2}=1 \leftrightarrow \dfrac{b}{2}.\dfrac{c}{3}+\dfrac{c}{3}.\dfrac{a}{1}+\dfrac{a}{1}.\dfrac{b}{2}=1$$
Đặt $(\dfrac{a}{1},\dfrac{b}{2},\dfrac{c}{3})=(x,y,z), x,y,z>0 \rightarrow xy+yz+zx=1$
Mặt khác $$A=\dfrac{1}{a^2+1}+\dfrac{1}{(\dfrac{b}{2})^2+1}+\dfrac{1}{(\dfrac{c}{3})^2+1}=\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}$$
Do đó ta cần tìm max của $$\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}$$
Với $$xy+yz+zx=1$$
Thật vậy thay
$$1=xy+yz+zx \rightarrow A=\sum{\dfrac{1}{x^2+xy+yz+zx}}=\sum{\dfrac{1}{(x+y)(y+z)}}=\dfrac{(x+y)+(y+z)+(z+x)}{(x+y)(y+z)(z+x)}=\dfrac{2(x+y+z)}{(x+y)(y+z)(z+x)}$$
Áp dụng bdt $(x+y)(y+z)(z+x)\geq \dfrac{8}{9}(x+y+z)(xy+yz+xz)$
Suy ra $A\le \dfrac{2(x+y+z)}{\dfrac{8}{9}(x+y+z)(xy+xz+zx)}$ thay $xy+yz+zx=1 \rightarrow A\le \dfrac{9}{4}$
Dấu $= \leftrightarrow x=y=z=\sqrt{\dfrac{1}{3}} \rightarrow a=..., b=...,c=...$ Làm tiếp hộ mình

25 tháng 3 2019

Tks

8 tháng 7 2020

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

8 tháng 7 2020

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

8 tháng 7 2020

Áp dụng AM - GM 

\(P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}\ge\frac{1}{\sqrt{2ab}}+\frac{1}{\sqrt{2bc}}+\frac{1}{\sqrt{2ca}}\)

\(abc=a+b+c+2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)\ge\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

Với mọi số thực x,y,z ta có ngay:

\(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{1+\frac{y+z}{x}}+\frac{1}{1+\frac{z+x}{y}}+\frac{1}{1+\frac{x+y}{z}}=1\)

Khi đó ta có thể đặt được \(\left(a;b;c\right)\rightarrow\left(\frac{y+z}{x};\frac{z+x}{y};\frac{x+y}{z}\right)\) 

Thay vào thì dễ có:

\(\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(z+y\right)\left(x+y\right)}}\)

\(\le\frac{1}{2}\Sigma\left(\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy ...........................

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

8 tháng 4 2016

Ta có \(x^3+y^3\ge\frac{1}{4}\left(x+y\right)^3;xy\le\left(\frac{x+y}{2}\right)^2\) với mọi \(x,y>0\)

Kết hợp với giả thiết suy ra :

\(\frac{1}{4}\left(a+b+c\right)^3\le\left(a+b\right)^3+c^3\le4\left(a^3+b^3\right)+c^3\le2\left(a+b+c\right)\left(\frac{\left(a+b+c\right)^2}{4}-2\right)\)

\(\Rightarrow a+b+c\ge4\)

Khi đó sử dựng bất đẳng thức AM-GM ta có :

\(\frac{2a^2}{3a^2+b^2+2a\left(c+2\right)}=\frac{a}{a+c+2+\left(\frac{b^2}{2a}+\frac{a}{2}\right)}\le\frac{a}{a+c+2+2\sqrt{\frac{b^2}{2a}.\frac{a}{2}}}=\frac{a}{a+b+c+2}\)

Và \(\left(a+b\right)^2+c^2\ge\frac{1}{2}\left(a+b+c\right)^2\)

Suy ra \(P\le\frac{a+b+c}{a+b+c+2}-\frac{\left(a+b+c\right)^2}{32}\)

Đặt \(t=a+b+c\ge4,P\le f\left(t\right)=\frac{t}{t+2}-\frac{t^2}{32}\)

Ta có : \(f'\left(t\right)=\frac{2}{\left(t+2\right)^2}-\frac{t}{16}=\frac{32-t\left(t+2\right)^2}{16\left(t+2\right)^2}<0\) với mọi \(t\ge4\)

Suy ra hàm số \(f'\left(t\right)\) nghịch biến trên \(\left(4;+\infty\right)\). Do đó \(P\le f\left(t\right)\le f\left(4\right)=\frac{1}{6}\)

Dấu = xảy ra khi và chỉ khi \(\begin{cases}a=b;a+b=c\\a+b+c=4\end{cases}\) \(\Leftrightarrow a=b=1,c=2\)

Vậy giá trị lớn nhất của P bằng \(\frac{1}{6}\)

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi